THE METHOD OF UNDETERMINED COEFFICIENTS FOR OF NONHOMOGENEOUS LINEAR SYSTEMS

Consider the system of differential equations

$$
\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{g}=\left(\begin{array}{cc}
1 & 1 \tag{1}\\
4 & -2
\end{array}\right) \mathbf{x}+\binom{e^{2 t}}{-2 e^{t}}
$$

By way of analogy, I'm going to call the function \mathbf{g}, or other functions in the same position, a "forcing function", even though this isn't necessarily a spring problem.

Let's solve this using the method of undetermined coefficients. The general solution is of the form

$$
\mathbf{x}=\mathbf{x}_{C}+\mathbf{x}_{P}
$$

where \mathbf{x}_{C} is the general solution to the associated homogeneous equation, and \mathbf{x}_{P} is a particular solution to the equation (1).

So we start by solving the associated homogeneous equation

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & 1 \tag{2}\\
4 & -2
\end{array}\right) \mathbf{x}
$$

The characteristic polynomial is

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)(-2-\lambda)-1 \cdot 4=\lambda^{2}+\lambda-6,
$$

which factors as $(\lambda+3)(\lambda-2)$. So the eigenvalues are $\lambda=-3$ and 2 .
An eigenvector ξ for $\lambda=-3$ will satisfy

$$
(A+3 I) \xi=\left(\begin{array}{ll}
4 & 1 \\
4 & 1
\end{array}\right) \xi=0
$$

One such vector is $\binom{1}{-4}$.
An eigenvector for $\lambda=2$ will satisfy

$$
(A-2 I) \xi=\left(\begin{array}{cc}
-1 & 1 \\
4 & -4
\end{array}\right)=0
$$

One such vector is $\binom{1}{1}$.
So the general solution to (2) is

$$
\mathbf{x}_{C}=C_{1}\binom{1}{-4} e^{-3 t}+C_{2}\binom{1}{1} e^{2 t}
$$

We now find a particular solution to (1). First, let's rewrite (1) as

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
1 & 1 \tag{3}\\
4 & -2
\end{array}\right) \mathbf{x}+\binom{1}{0} e^{2 t}+\binom{0}{-2} e^{t}
$$

This can be split into two nonhomogeneous equations with the same AHE:

$$
\begin{align*}
\mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \mathbf{x}+\binom{1}{0} e^{2 t} \tag{4}\\
\mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
4 & -2
\end{array}\right) \mathbf{x}+\binom{0}{-2} e^{t} \tag{5}
\end{align*}
$$

Let $\mathbf{x}_{P}^{(1)}$ be a particular solution to (4), and let $\mathbf{x}_{P}^{(2)}$ be a particular solution to (5). Then $\mathbf{x}_{P}^{(1)}+\mathbf{x}_{P}^{(2)}$ is a particular solution to (3). (Do you see why? Try substituting this into (3) and using what you know about $\mathbf{x}_{P}^{(1)}$ and $\mathbf{x}_{P}^{(2)}$. This is similar to the reason why the sum of two solutions to a linear homogeneous equation is also a solution to the same equation.) So the general solution to (1) can be written in the form

$$
\mathbf{x}=\mathbf{x}_{C}+\mathbf{x}_{P}^{(1)}+\mathbf{x}_{P}^{(2)}
$$

Next, we find $\mathbf{x}_{P}^{(2)}$. The forcing function in (5) is a multiple of e^{t} (by a vector!), so we should try the function with undetermined (vector-valued!) coefficients,

$$
\mathbf{x}=\mathbf{a} e^{t}=\binom{a_{1}}{a_{2}} e^{t}
$$

Let's substitute this into (5). We get

$$
\binom{a_{1}}{a_{2}} e^{t}=\binom{a_{1}+a_{2}}{4 a_{1}-2 a_{2}} e^{t}+\binom{0}{-2} e^{t} .
$$

(You might be tempted to solve for t here, but that's the wrong move! The two sides are equal as functions of t, so we can just compare the coefficients of e^{t} and solve for a_{1} and a_{2}.) Comparing the coordinates, we get the system of equations

$$
\begin{aligned}
& a_{1}=a_{1}+a_{2}, \\
& a_{2}=4 a_{1}-2 a_{2}+2 .
\end{aligned}
$$

(Be sure you understand this step, since it's the sort of vector manipulation you'll need to do quite a bit.) The solution is $a_{2}=0, a_{1}=1 / 2$. So our particular solution to (5) is

$$
\begin{equation*}
\mathbf{x}_{P}^{(2)}=\binom{1 / 2}{0} e^{t} \tag{6}
\end{equation*}
$$

(This illustrates what you should be doing in general. If the forcing function is a vector times $e^{r t}$, try an unknown vector times $e^{r t}$. If it's a vector times $\sin (r t)$ or $\cos (r t)$, try an unknown vector times $\sin (r t)$ plus an unknown vector times $\cos (r t)$. If it's a vector times a polynomial of degree d, try a polynomial of degree d with unknown vector coefficients. If it's a product of these, try a product of the appropriate things, just as you would in the single-equation case. As always, don't be afraid to try something and get it wrong you can usually see what you missed after doing the calculation, and correct accordingly.)

Finally, we have to find $\mathbf{x}_{P}^{(1)}$. Of course, this is a little subtler since the forcing function in (4) is a multiple of $e^{2 t}$, and 2 is a root of the characteristic polynomial. I'll do multiple attempts to show you what happens.

First attempt: We try

$$
\mathbf{x}=\mathbf{b} e^{2 t}=\binom{b_{1}}{b_{2}} e^{2 t}
$$

Plugging this into (4), we get

$$
\binom{2 b_{1}}{2 b_{2}} e^{2 t}=\binom{b_{1}+b_{2}}{4 b_{1}-2 b_{2}} e^{2 t}+\binom{1}{0} e^{2 t}
$$

Comparing the coefficients of $e^{2 t}$ on both sides, we get the system of equations

$$
\begin{aligned}
& 2 b_{1}=b_{1}+b_{2}+1, \\
& 2 b_{2}=4 b_{1}-2 b_{2}
\end{aligned}
$$

It's not too hard to see that this system has no solutions. So this choice of \mathbf{x} didn't work.
Here's one way of thinking about what just happened. For certain values of $\mathbf{b}-$ namely, for \mathbf{b} a scalar multiple of the eigenvector $\binom{1}{1}-\mathbf{b} e^{2 t}$ is a solution to the associated homogeneous equation. Substituting any of these functions into $\mathbf{x}^{\prime}-A \mathbf{x}$ gives zero. So substituting an arbitrary function $\mathbf{b} e^{2 t}$ into $\mathbf{x}^{\prime}-A \mathbf{x}$ gives just a one-dimensional space of outputs, where we sort of need a two-dimensional one. You can check that if $\mathbf{x}=\mathbf{b} e^{2 t}$, then $\mathbf{x}^{\prime}-A \mathbf{x}$ is a scalar multiple of $\binom{1}{1} e^{2 t}$. If our forcing function was also a scalar multiple of $\binom{1}{1} e^{2 t}$, we'd be able to solve for \mathbf{x}, but in general, this is too little space to move in.

Second attempt: Inspired by the single-variable case, let

$$
\mathbf{x}=\mathbf{b} t e^{2 t}=\binom{b_{1}}{b_{2}} t e^{2 t}
$$

Substituting this into (4), we obtain

$$
\binom{2 b_{1}}{2 b_{2}} t e^{2 t}+\binom{b_{1}}{b_{2}} e^{2 t}=\binom{b_{1}+b_{2}}{4 b_{1}-2 b_{2}} t e^{2 t}+\binom{1}{0} e^{2 t} .
$$

Comparing the coefficients of $t e^{2 t}$, we get

$$
\begin{aligned}
& 2 b_{1}=b_{1}+b_{2} \\
& 2 b_{2}=4 b_{1}-2 b_{2}
\end{aligned}
$$

These equations are satisfied whenever $b_{1}=b_{2}$. However, comparing the coefficients of $e^{2 t}$, we also must have $b_{1}=1$ and $b_{2}=0$. So there is no solution. (This is a good example of why you can't stop after one of the coefficient comparisons, even if you think you've gotten a solution.)

Third attempt: Since there was an incongruity when we compared coefficients of $e^{2 t}$, we might try to add something to deal with this incongruity. So try

$$
\mathbf{x}=\mathbf{b} t e^{2 t}+\mathbf{d} e^{2 t}=\binom{b_{1}}{b_{2}} t e^{2 t}+\binom{d_{1}}{d_{2}} e^{2 t}
$$

Substituting this into (4), we obtain

$$
\binom{2 b_{1}}{2 b_{2}} t e^{2 t}+\binom{b_{1}}{b_{2}} e^{2 t}+\binom{2 d_{1}}{2 d_{2}} e^{2 t}=\binom{b_{1}+b_{2}}{4 b_{1}-2 b_{2}} t e^{2 t}+\binom{d_{1}+d_{2}}{4 d_{1}-2 d_{2}} e^{2 t}+\binom{1}{0} e^{2 t}
$$

As in the second attempt, the coefficients of $t e^{2 t}$ force $b_{1}=b_{2}$. Now we compare coefficients of $e^{2 t}$. We get

$$
\begin{aligned}
& b_{1}+2 d_{1}=d_{1}+d_{2}+1 \\
& b_{2}+2 d_{2}=4 d_{1}-2 d_{2}
\end{aligned}
$$

So $b_{1}=b_{2}=-d_{1}+d_{2}+1$, from the first equation. Substituting this into the second equation, we have

$$
-d_{1}+3 d_{2}+1=4 d_{1}-2 d_{2}
$$

so that $5 d_{1}-5 d_{2}=1$. We have no more equations to use, so we can just pick a solution, e.g., $d_{1}=1 / 5$ and $d_{2}=0$, which then gives $b_{1}=b_{2}=4 / 5$. (It isn't absurd that we have more than one choice here, because there's no canonical 'particular solution' to the equation (4) anyway - any solution to (4) could equally well be $\mathbf{x}_{P}^{(1)}$.) We end up with the solution

$$
\begin{equation*}
\mathbf{x}_{P}^{(1)}=\binom{4 / 5}{4 / 5} t e^{2 t}+\binom{1 / 5}{0} e^{2 t} \tag{7}
\end{equation*}
$$

Finally, the general solution to (1) is

$$
\mathbf{x}=C_{1}\binom{1}{-4} e^{-3 t}+C_{2}\binom{1}{1} e^{2 t}+\binom{4 / 5}{4 / 5} t e^{2 t}+\binom{1 / 5}{0} e^{2 t}+\mathbf{x}_{P}^{(2)}=\binom{1 / 2}{0} e^{t} .
$$

Let's break this process down into steps for solving a general equation of the form

$$
\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{g}(t)
$$

(1) Solve the associated homogeneous equation, $\mathbf{x}^{\prime}=A \mathbf{x}$.
(2) Break \mathbf{g} down into a sum of simpler functions $\mathbf{g}^{(1)}, \ldots, \mathbf{g}^{(n)}$, each of which is a constant vector times a function of t. (This function should be an exponential function, a polynomial, a sine or cosine, or some product of these for the method of undetermined coefficients to work.)
(3) For each such function, try to find a particular solution to the problem

$$
\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{g}^{(i)}
$$

by substituting for \mathbf{x} an appropriate function of t with undetermined vector coefficients. Use exactly the same principles you learned in the single-variable case to pick the function of t. By comparing coefficients of various functions of t on both sides, solve for the undetermined coefficients.
(4) If $\mathbf{g}^{(i)}$ is a vector times $e^{r t}$ and r is an eigenvalue of A, then $\mathbf{x}=\mathbf{a} e^{r t}$ will probably not work. Instead, try

$$
\mathbf{x}=\mathbf{a} t e^{r t}+\mathbf{b} e^{r t}
$$

where \mathbf{a} and \mathbf{b} are undetermined vectors. Likewise, if $\mathbf{g}^{(i)}$ is a vector times $e^{\alpha t} \cos (\beta t)$ or $e^{\alpha t} \sin (\beta t)$ and $\alpha \pm i \beta$ are complex conjugate eigenvalues of A, then for \mathbf{x} you should try

$$
\mathbf{x}=\mathbf{a} t e^{\alpha t} \cos (\beta t)+\mathbf{b} t e^{\alpha t} \sin (\beta t)+\mathbf{c} e^{\alpha t} \cos (\beta t)+\mathbf{d} e^{\alpha t} \sin (\beta t)
$$

where $\mathbf{a}, \ldots, \mathbf{d}$ are undetermined vectors. Finally, if $\mathbf{g}^{(i)}$ is a vector times $t e^{r t}$ and r is a repeated eigenvalue of A, then you should try

$$
\mathbf{x}=\mathbf{a} t^{2} e^{r t}+\mathbf{b} t e^{r t}
$$

where \mathbf{a} and \mathbf{b} are undetermined vectors.
(5) The general solution to the nonhomogeneous equation is:
(general solution to AHE) $+\left(\right.$ particular solution to the equation with forcing function $\left.\mathbf{g}^{(1)}\right)$

$$
+\cdots+\left(\text { particular solution to the equation with forcing function } \mathbf{g}^{(n)}\right)
$$

