Week 11 solutions

ASSIGNMENT 26.

6.3.1. Sketch the graph of the given function on the interval $t \geq 0$.

$$
g(t)=u_{1}(t)+2 u_{3}(t)-6 u_{4}(t) .
$$

We can write g as a piecewise function:

$$
g(t)= \begin{cases}0 & 0 \leq t<1 \\ 1 & 1 \leq t<3 \\ 3 & 3 \leq t<4 \\ -3 & 4 \leq t\end{cases}
$$

I entered this into Desmos as

$$
y=\{x<1: 0,1 \leq x<3: 1,3 \leq x<4: 3,4 \leq x:-3\}
$$

and got the graph:

2. Sketch the graph of the given function on the interval $t \geq 0$.

$$
g(t)=(t-3) u_{2}(t)-(t-2) u_{3}(t) .
$$

As a piecewise function,

$$
g(t)= \begin{cases}0 & 0 \leq t<2 \\ t-3 & 2 \leq t<3 \\ -1 & 3 \leq t\end{cases}
$$

(The last piece, for $t \geq 3$, is $(t-3)-(t-2)=-1$.) The graph of

$$
y=\{x<2: 0,2 \leq x<3: x-3,3 \leq x:-1\}
$$

is:

18. Find the Laplace transform of the given function.

$$
f(t)=t-u_{1}(t)(t-1), \quad t \geq 0
$$

Recall the translation property,

$$
\mathcal{L}\left[u_{c}(t) f(t-c)\right]=e^{-c s} \mathcal{L}[f(t)] .
$$

So for this f,

$$
\mathcal{L}[f]=\mathcal{L}[t]-\mathcal{L}\left[u_{1}(t)(t-1)\right]=\mathcal{L}[t]-e^{-s} \mathcal{L}[t]=\frac{1}{s^{2}}-\frac{e^{-s}}{s^{2}} .
$$

You could also get the same answer if you started by rewriting f as a sum of shifts:

$$
f(t)=t-\operatorname{sh}_{1}(t)
$$

21. Find the inverse Laplace transform of the given function.

$$
F(s)=\frac{2(s-1) e^{-2 s}}{s^{2}-2 s+2}
$$

Let

$$
G(s)=\frac{2(s-1)}{s^{2}-2 s+2}
$$

We will start by finding $\mathcal{L}^{-1}[G(s)]$. We have

$$
G(s)=2 \frac{s-1}{(s-1)^{2}+1},
$$

so its inverse Laplace transform is

$$
g(t)=2 e^{t} \cos t .
$$

Now, since $F(s)=e^{-2 s} G(s)$,

$$
\mathcal{L}^{-1}[F(s)]=\operatorname{sh}_{2}(g(t))=\operatorname{sh}_{2}\left(2 e^{t} \cos (t)\right) .
$$

This could also be written as

$$
\mathcal{L}^{-1}[F]=u_{2}(t) \cdot 2 e^{t-2} \cos (t-2),
$$

or as

$$
\mathcal{L}^{-1}[F]= \begin{cases}0 & t<2 \\ 2 e^{t-2} \cos (t-2) & 2 \leq t\end{cases}
$$

23. Find the inverse Laplace transform of the given function.

$$
F(s)=\frac{(s-2) e^{-s}}{s^{2}-4 s+3}
$$

Again, let

$$
G(s)=\frac{s-2}{s^{2}-4 s+3} .
$$

We begin by finding the inverse Laplace transform of G. Unlike in the previous problem, the denominator of G factors over the reals as $(s-1)(s-3)$. So we should find a partial fraction decomposition

$$
\frac{s-2}{s^{2}-4 s+3}=\frac{A}{s-1}+\frac{B}{s-3} .
$$

Multiplying through:

$$
s-2=A(s-3)+B(s-1) .
$$

If $s=3$, we get $1=2 B$, so $B=1 / 2$. If $s=1$, we get $-1=-2 A$, so $A=1 / 2$. Thus,

$$
G(s)=\frac{1}{2} \frac{1}{s-1}+\frac{1}{2} \frac{1}{s-3} .
$$

So

$$
g(t)=\mathcal{L}^{-1}[G]=\frac{1}{2} e^{t}+\frac{1}{2} e^{3 t} .
$$

Since $F(s)=e^{-s} G(s)$,

$$
\mathcal{L}^{-1}[F]=\operatorname{sh}_{1} \mathcal{L}^{-1}[G]=\operatorname{sh}_{1}\left(\frac{1}{2} e^{t}+\frac{1}{2} e^{3 t}\right) .
$$

This could also be written as

$$
\mathcal{L}^{-1}[F]=u_{1}(t) \cdot\left(\frac{1}{2} e^{t-1}+\frac{1}{2} e^{3(t-1)}\right),
$$

or as

$$
\mathcal{L}^{-1}[F]= \begin{cases}0 & 0 \leq t<1 \\ \frac{1}{2} e^{t-1}+\frac{1}{2} e^{3(t-1)} & 1 \leq t\end{cases}
$$

Assignment 27 had no hand-graded component.

