Week 12 solutions

ASSIGNMENT 28.

6.5.14(a,b). Consider the initial value problem

$$
y^{\prime \prime}+\gamma y^{\prime}+y=\delta(t-1), \quad y(0), y^{\prime}(0)=0,
$$

where γ is the damping coefficient (or resistance).
(a) Let $\gamma=1$. Find the solution of the initial value problem and plot its graph. If $Y=\mathcal{L}[y]$, then the Laplace transform of the equation is

$$
s^{2} Y+s Y+Y=e^{-s}
$$

or

$$
Y=\frac{e^{-s}}{s^{2}+s+1}=e^{-s}\left(\frac{1}{(s+1 / 2)^{2}+3 / 4}\right)
$$

The inverse Laplace transform is

$$
y=\operatorname{sh}_{1}\left(\frac{2}{\sqrt{3}} e^{-t / 2} \sin (\sqrt{3} t / 2)\right)= \begin{cases}0 & 0 \leq t<1 \\ \frac{2}{\sqrt{3}} e^{-(t-1) / 2} \sin (\sqrt{3}(t-1) / 2) & 1 \leq t\end{cases}
$$

Here is a graph:

(b) Find the time t_{1} at which the solution attains its maximum value. Also find the maximum value y_{1} of the solution. Using Desmos, I found that the maximum is at (2.209, 0.546).
L. Use Laplace transforms to find a particular solution, $y_{p}(t)$, of

$$
y^{\prime \prime}+4 y=20 e^{t}
$$

Since any particular solution will do, we can pick the initial conditions freely. For example, let $y(0)=y^{\prime}(0)=0$. Then if $Y=\mathcal{L}[y]$, the Laplace transform of the equation is

$$
s^{2} Y+4 Y=\frac{20}{s-1}
$$

which simplifies to

$$
Y=\frac{20}{(s-1)\left(s^{2}+4\right)}
$$

Using partial fractions, we have

$$
Y=\frac{4}{s-1}+\frac{-4 s-4}{s^{2}+4}
$$

The inverse Laplace transform is

$$
y=4 e^{t}-4 \cos (2 t)-2 \sin (2 t) .
$$

ASSIGNMENT 29.

6.6.4. Find the Laplace transform of the function

$$
f(t)=\int_{0}^{t}(t-\tau)^{2} \cos (2 \tau) d \tau
$$

This function is a convolution:

$$
f(t)=t * \cos (2 t)
$$

So

$$
\mathcal{L}[f]=\mathcal{L}[t] \cdot \mathcal{L}[\cos (2 t)]=\frac{1}{s} \cdot \frac{s}{s^{2}+4}=\frac{s}{s\left(s^{2}+4\right)}
$$

6.6.5. Find the Laplace transform of the function

$$
f(t)=\int_{0}^{t} e^{-(t-\tau)} \sin (\tau) d \tau
$$

Again, write

$$
f(t)=e^{-t} * \sin (t)
$$

Then

$$
\mathcal{L}[f]=\mathcal{L}\left[e^{-t}\right] \cdot \mathcal{L}[\sin (t)]=\frac{1}{s+1} \cdot \frac{1}{s^{2}+1}=\frac{1}{(s+1)\left(s^{2}+1\right)} .
$$

ASSIGNMENT 30.

7.2.22. Verify that the given vector satisfies the given differential equation.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \mathbf{x}, \quad \mathbf{x}=\binom{4}{2} e^{2 t}
$$

We calculate that

$$
\mathbf{x}^{\prime}=2\binom{4}{2} e^{2 t}=\binom{8}{4} e^{2 t}
$$

and that

$$
\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right) \mathbf{x}=\left(\begin{array}{ll}
3 & -2 \\
2 & -2
\end{array}\right)\binom{4}{2} e^{2 t}=\binom{3 \cdot 4-2 \cdot 2}{2 \cdot 4-2 \cdot 2} e^{2 t}=\binom{8}{4} e^{2 t} .
$$

So the given \mathbf{x} satisfies the differential equation.
7.2.23. Verify that the given vector satisfies the given differential equation.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{x}+\binom{1}{-1} e^{t}, \quad \mathbf{x}=\binom{1}{0} e^{t}+2\binom{1}{1} t e^{t}
$$

We have

$$
\mathbf{x}^{\prime}=\binom{1}{0} e^{t}+\binom{2}{2} t e^{t}+\binom{2}{2} e^{t}=\binom{3}{2} e^{t}+\binom{2}{2} t e^{t},
$$

and

$$
\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{x}+\binom{1}{-1} e^{t}=\binom{2 \cdot 1-1 \cdot 0}{3 \cdot 1-2 \cdot 0} e^{t}+\binom{2 \cdot 2-1 \cdot 2}{3 \cdot 2-2 \cdot 2} t e^{t}=\binom{3}{2} e^{t}+\binom{2}{2} t e^{t} .
$$

M. Tank 1 initially contains 50 gals of water with 10 oz of salt in it, while Tank 2 initially contains 20 gals of water with 15 oz of salt in it. Water containing $2 \mathrm{oz} / \mathrm{gal}$ of salt flows into Tank 1 at a rate of $5 \mathrm{gal} / \mathrm{min}$ and the well-stirred mixture flows from Tank 1 into Tank 2 at the same rate of $5 \mathrm{gal} / \mathrm{min}$. The solution in Tank 2 flows out to the ground at a rate of $5 \mathrm{gal} / \mathrm{min}$. If $x_{1}(t)$ and $x_{2}(t)$ represent the number of ounces of salt in Tank 1 and Tank 2, respectively, set up but do not solve an initial value problem describing this system.
The intake into Tank 1 adds 10 oz of salt per minute to it. 5 gallons of water from Tank 1, which contain $5 x_{1} / 50=x_{1} / 10$ ounces of salt, flow from Tank 1 to Tank 2 every minute. So the differential equation for x_{1} is

$$
x_{1}^{\prime}=10-x_{1} / 10 .
$$

Tank 2 receives the aforementioned $x_{1} / 10$ ounces of salt, and loses $5 x_{2} / 20=x_{2} / 4$ ounces of salt from the outflow, so its differential equation is

$$
x_{2}^{\prime}=x_{1} / 10-x_{2} / 4 .
$$

(Notice that the volume of water in each tank is constant - if it weren't, the denominators would also have to change over time The initial values are

$$
x_{1}(0)=10, x_{2}(0)=15 .
$$

This system is an acceptable solution, but we could also write the system as a vectorvalued differential equation. If $\mathbf{x}=\binom{x_{1}}{x_{2}}$, then the equation is

$$
\mathrm{x}^{\prime}=\left(\begin{array}{cc}
-1 / 10 & 0 \\
1 / 10 & -1 / 4
\end{array}\right) \mathrm{x}+\binom{10}{0} .
$$

