
Week 13 solutions

ASSIGNMENT 31.

7.3.17. Find all eigenvalues and eigenvectors of the matrix
(
3 −2
4 −1

)
.

The characteristic polynomial is∣∣∣∣3− λ −2
4 −1− λ

∣∣∣∣ = (3− λ)(−1− λ) + 8 = λ2 − 2λ+ 5.

The eigenvalues are the roots of this polynomial, i. e., λ = 1±2i. First take λ = 1+2i.
Eigenvectors are solutions to(

3− (1 + 2i) −2
4 −1− (1 + 2i)

)(
ξ1
ξ2

)
= 0.

This system of equations are redundant, so it has infinitely many solutions. More
precisely, if ξ is any eigenvector, any scalar multiple of it will also be an eigenvector.
To find an eigenvector, we solve the equation coming from the top row:

(2− 2i)ξ1 − 2ξ2 = 0,

which means ξ1 = ξ2/(1− i) = 1+i
2 ξ2. So the set of eigenvectors corresponding to this

eigenvalue is the set of (nonzero) scalar multiples (by complex numbers) of

ξ =

(
1+i
2
1

)
.

The second set of eigenvectors can be found by repeating this process for the eigen-
value 1 − 2i. Alternatively, since the matrix has real entries and complex conjugate
eigenvalues, the eigenvectors for 1 − 2i are precisely the complex conjugates of the
eigenvectors for 1 + 2i. So they are the nonzero scalar multiples of

ξ =

(
1−i
2
1

)
.

7.3.20. Find all eigenvalues and eigenvectors of the matrix
(

1
√
3√

3 −1

)
.

The characteristic polynomial is∣∣∣∣1− λ √
3√

3 −1− λ

∣∣∣∣ = λ2 − 4.

So the eigenvalues are ±2. When λ = 2, we need to solve(
−1

√
3√

3 −3

)
ξ = 0.
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The solutions are the scalar multiples of ξ =
(√

3
1

)
. When λ = −2, we need to solve(

−3
√

3√
3 −1

)
ξ = 0.

The solutions are the scalar multiples of ξ =
( 1√

3

)
.

ASSIGNMENT 32.

7.5.1. Find the general solution of the system of equations and describe the behavior of the
solution as t→∞. Draw a direction field and plot a few trajectories of the system.

x′ =

(
3 −2
2 −2

)
x.

The eigenvalues are the solutions to

0 =

∣∣∣∣3− λ −2
2 −2− λ

∣∣∣∣ = λ2 − λ− 2,

which are λ = 2, λ = −1. Corresponding to λ = 2, we have the eigenvector
(
2
1

)
.

Corresponding to λ = −1, we have the eigenvector
(
1
2

)
. So the general solution is

x = C1

(
2
1

)
e2t + C2

(
1
2

)
e−t.

As t→∞, the e−t term vanishes and the e2t term gets large. The solution approaches
infinity, along a line parallel to the vector

(
2
1

)
. Here is a graph from pplane:
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7.5.4. Find the general solution of the system of equations and describe the behavior of the
solution as t→∞. Draw a direction field and plot a few trajectories of the system.

x′ =

(
1 1
4 −2

)
x.

The eigenvalues are the solutions to

0 =

∣∣∣∣1− λ 1
4 −2− λ

∣∣∣∣ = λ2 + λ− 6,

which are λ = 2, λ = −3. Corresponding to λ = 2, we have the eigenvector
(
1
1

)
.

Corresponding to λ = −3, we have the eigenvector
(

1
−4
)
. So the general solution is

x = C1

(
1
1

)
e2t + C2

(
1
−4

)
e−3t.

As in the previous problem, the e2t term dominates for large t, and the solutions go
to infinity parallel to

(
1
1

)
. Here is a graph:

N. If x(1)(t) and x(2)(t) are linearly independent solutions to the 2× 2 system x′ = Ax,
then the matrix Φ(t) = (x(1)(t),x(2)(t)) is called a Fundamental Matrix for the system. Find a Fundamental Matrix Φ(t) for the system

x′ =

(
4 −3
8 −6

)
x.

The eigenvalues are the solutions to

0 =

∣∣∣∣4− λ −3
8 −6− λ

∣∣∣∣ = λ2 + 2λ,
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which are λ = 0, λ = −2. Corresponding to λ = 0 is the eigenvector
(
3
4

)
. Cor-

responding to λ = −2 is the eigenvector
(
1
2

)
. These give two linearly independent

solutions:

x(1) =

(
3

4

)(
=

(
3

4

)
e0t

)
,x(2) =

(
1

2

)
e−2t.

A fundamental matrix is given by

Phi(t) =

(
3 e−2t

4 2e−2t

)
.

Of course, this is not the only fundamental matrix. If we chose a different fundamental
set of solutions, we’d get a different matrix.

ASSIGNMENT 33.

7.6.2. Express the solution of the given system of equations in terms of real-valued functions.
Draw a direction field, sketch a few of the trajectories, and describe the behavior of
the solutions as t→∞.

x′ =

(
−1 −4
1 −1

)
x.

The characteristic polynomial is∣∣∣∣−1− λ −4
1 −1− λ

∣∣∣∣ = λ2 + 2λ+ 5,

whose roots are −1± 2i. An eigenvector for the eigenvalue −1 + 2i is
(
2i
1

)
. This gives

us the complex-valued solution

x =

(
2i
1

)
e(−1+2i)t =

(
2ie−t(cos(2t) + i sin(2t))
e−t cos(2t) + i sin(2t)

)
=

(
−2e−t sin(2t) + i · 2e−t cos(2t)
e−t cos(2t) + ie−t sin(2t)

)
.

As the differential equation is linear, homogeneous, and has real coefficients, the real
and imaginary part of this are also solutions:

x(1) =

(
−2e−t sin(2t)
e−t cos(2t)

)
, x(2) =

(
2e−t cos(2t)
e−t sin(2t)

)
.

The general real-valued solution is

x = C1

(
−2e−t sin(2t)
e−t cos(2t)

)
+ C2

(
2e−t cos(2t)
e−t sin(2t)

)
.

Here is a graph:
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As you can see, the solutions spiral towards zero as t → ∞. So zero is what’s called
an asymptotically stable spiral point.

Notice that we did not need to use both eigenvalues to find the complete set of real-
valued solutions. In fact, the complex-valued solution given by an eigenvector for the
second eigenvalue would just be the complex conjugate of the first complex-valued
solution we found (or a scalar multiple thereof). So its real and imaginary part would
give us no new information.

7.6.6. Express the solution of the given system of equations in terms of real-valued functions.
Draw a direction field, sketch a few of the trajectories, and describe the behavior of
the solutions as t→∞.

x′ =

(
1 2
−5 −1

)
x.

The characteristic polynomial is∣∣∣∣1− λ 2
−5 −1− λ

∣∣∣∣ = λ2 + 9,

whose roots are ±3i. An eigenvector for the eigenvalue 3i is
(
1+3i
5

)
. This gives us the

complex-valued solution

x =

(
1 + 3i

5

)
e3it =

(
(1 + 3i)(cos(3t) + i sin(3t))

5(cos(3t) + i sin(3t))

)
=

(
(cos(3t)− 3 sin(3t)) + i(3 cos(3t) + sin(3t))

5 cos(3t) + 5i sin(3t)

)
.

Taking the real and imaginary part of this, we get real-valued solutions

x(1) =

(
cos(3t)− 3 sin(3t)

5 cos(3t)

)
, x(2) =

(
3 cos(3t) + sin(3t)

5 sin(3t)

)
.
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The general real-valued solution is

x = C1

(
cos(3t)− 3 sin(3t)

5 cos(3t)

)
+ C2

(
3 cos(3t) + sin(3t)

5 sin(3t)

)
.

Here is a graph:

Solutions orbit around ellipses with (0, 0) as the center.
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