## Solutions to Week 5 Homework

## ASSIGNMENT 11.

2.7.20. Consider the initial value problem

$$
y^{\prime}=1-t+y, \quad y\left(t_{0}\right)=y_{0}
$$

We will show that the approximation generated by the Euler method converges to the actual solution as the step size $h$ decreases.
(a) Show that the exact solution is

$$
y=\phi(t)=\left(y_{0}-t_{0}\right) e^{t-t_{0}}+t
$$

This is a linear differential equation, so we can solve it using the integrating factor method. We rewrite it as

$$
y^{\prime}-y=1-t
$$

so the integrating factor is

$$
\mu(t)=\exp \left(\int-1 d t\right)=e^{-t}
$$

We compute:

$$
\begin{aligned}
e^{-t} y^{\prime}-e^{-t} y & =e^{-t}(1-t) \\
\left(e^{-t} y\right)^{\prime} & =e^{-t}(1-t) \\
e^{-t} y & =\int(1-t) e^{-t} d t=\int e^{-t} d t-\int t e^{-t} d t \\
& =-e^{-t}-\int t e^{-t} d t
\end{aligned}
$$

This last integral can be computed by parts. Taking $u=t$ and $d v=e^{-t} d t$, we have $d u=d t$ and $v=-e^{-t}$, so that

$$
\int t e^{-t} d t=-t e^{-t}+\int e^{-t} d t=(-1-t) e^{-t}+C
$$

Thus,

$$
e^{-t} y=t e^{-t}+C
$$

giving the general solution

$$
y=t+C e^{t}
$$

Plugging in the initial condition $y\left(t_{0}\right)=y_{0}$, we obtain

$$
y_{0}=t_{0}+C e^{t_{0}}
$$

or

$$
C=\left(y_{0}-t_{0}\right) e^{-t_{0}}
$$

This gives the solution to the equation:

$$
y=\phi(t)=\left(y_{0}-t_{0}\right) e^{t-t_{0}}+t
$$

(b) Using the Euler formula, show that

$$
\begin{equation*}
y_{k}=(1+h) y_{k-1}+h-h t_{k-1}, \quad k=1,2, \ldots \tag{1}
\end{equation*}
$$

Here, $\left(t_{k}, y_{k}\right)$ is the $k$ th point obtained by Euler's method with a step size of $h$. Euler's method says that, if the differential equation is $y^{\prime}=f(t, y)$,

$$
y_{k}=f\left(t_{k-1}, y_{k-1}\right) h+y_{k-1}
$$

In this case, this means that

$$
y_{k}=\left(1-t_{k-1}+y_{k-1}\right) h+y_{k-1}=(1+h) y_{k-1}+h-h t_{k-1}
$$

(d) Consider a fixed point $t>t_{0}$ and for a given $n$ choose $h=\left(t-t_{0}\right) / n$. Then $t_{n}=t$ for every $n$. Note also that $h \rightarrow 0$ as $n \rightarrow \infty$. By substituting for $h$ in (1) and letting $n \rightarrow \infty$, show that $y_{n} \rightarrow \phi(t)$ as $n \rightarrow \infty$.
Hint: $\lim _{n \rightarrow \infty}(1+a / n)^{n}=e^{a}$.
We assume the result from part (c) of this problem, that for any $n$,

$$
y_{n}=(1+h)^{n}\left(y_{0}-t_{0}\right)+t_{n} .
$$

Since we have chosen $h=\left(t-t_{0}\right) / n$, so that $t_{n}=t$, this is equivalent to

$$
y_{n}=\left(1+\frac{t-t_{0}}{n}\right)^{n}\left(y_{0}-t_{0}\right)+t
$$

Using the hint, we get

$$
\lim _{n \rightarrow \infty} y_{n}=e^{t-t_{0}}\left(y_{0}-t_{0}\right)+t
$$

But this is just the formula for $\phi(t)$ obtained in part (a).

## ASSIGNMENT 12.

G. (a) If $y^{\prime}=-2 y+e^{-t}, y(0)=1$ then compute $y(1)$.

The equation is linear, so we can solve it with the integrating factor method. Writing

$$
y^{\prime}+2 y=e^{-t}
$$

we get an integrating factor of $\mu(t)=\exp \left(\int 2 d t\right)=e^{2 t}$. The equation becomes

$$
\begin{aligned}
\left(e^{2 t} y\right)^{\prime} & =e^{2 t-t}=e^{t} \\
e^{2 t} y & =\int e^{t} d t=e^{t}+C \\
y & =e^{-t}+C e^{-2 t}
\end{aligned}
$$

Since $y(0)=1, C$ must equal 0 . Thus, $y(t)=e^{-t}$ and

$$
y(1)=e^{-1}=0.368
$$

(Since the next part of the problem asks about an accuracy of 0.05 , three decimal places are all that we'll need.
(b) Experiment using the Euler Method (eul) with step sizes of the form $h=1 / n$ to find the smallest integer $n$ which will give a value $y_{n}$ that approximates the above true solution at $t=1$ within 0.05 .
I used the following MATLAB code, saved as problemG.m:

```
function f = problemG(t,y)
    f = -2*y + exp(-t);
end
```

and in the command line:

```
[t,y] = eul('problemG', [0,1], 1, 1/2); [t,y]
```

with $1 / 2$ replaced by different choices of $h$.
When the step size is $1 / 2$, eul returns a final $y$-value of 0.303 . When the step size is $1 / 3$, eul returns a final $y$-value of 0.325 , which is within 0.05 of the true value. So the smallest value of $n$ is 3 .
Instead of choosing $n$ by hand, one could also, example, write a for loop that tries different values of $n$ until it gets close enough to the real answer.
H. (a) If $y^{\prime}=2 y-3 e^{-t}, y(0)=1$ then compute $y(1)$.

Again, we write

$$
y^{\prime}-2 y=-3 e^{-t}
$$

and multiply by the integrating factor $e^{-2 t}$ to get

$$
e^{-2 t} y=\int-3 e^{-3 t} d t=e^{-3 t}+C
$$

or

$$
y=e^{-t}+C e^{2 t}
$$

Since $y(0)=1$, we again have $C=0$, so $y=e^{-t}$ and $y(1)=1 / e \approx 0.368$.
(b) Experiment using the Euler Method (eul) with step sizes of the form $h=1 / n$ to find the smallest integer $n$ which will give a value $y_{n}$ that approximates the above true solution at $t=1$ within 0.05 .
I used the following MATLAB code, saved as problemH.m:

```
function f = problemH(t,y)
    f = 2*y - 3*exp(-t);
end
```

and in the command line:

```
[t,y] = eul('problemH', [0,1], 1, 1/2); [t,y]
```

I found that $h=1 / 22$ was the first to get within 0.05 of the correct answer, returning $y_{22}=0.320$.
The point of this and the last problem is hopefully clear: the rate of convergence of the Euler method depends on the differential equation, not just its solution.
I. (a) Show that $y(t)=\int_{0}^{t} e^{-u^{2}}$ du satisfies the initial value problem $\frac{d y}{d t}=e^{-t^{2}}, y(0)=0$.

This is the fundamental theorem of calculus. If $F(t)=\int_{a}^{t} f(u) d u$ for some constant $a$, and $f$ is continuous on $(a, b)$, then $\frac{d}{d t} F(t)=f(t)$ for $t \in(a, b)$. In this case, we have

$$
\frac{d}{d t} \int_{0}^{t} e^{-u^{2}} d u=e^{-t^{2}}
$$

as desired. Also,

$$
y(0)=\int_{0}^{0} e^{-u^{2}} d u=0
$$

Don't get confused here. $y$ is a function of $t$, not of $u-u$ is only used to define the integration. So you shouldn't have had to 'change variables' from $u$ to $t$ or the like.
(b) Use the Euler method (eul) with $h=1 / 2$ to approximate the integral $\int_{0}^{2} e^{-u^{2}} d u$. The point is to treat the integral as the solution to the above initial value problem, and use the Euler method on that. My probleml.m was:

```
function f = problemI(t,y)
    f = exp(-t^2);
end
```

I then wrote
[t,y] = eul('problemI', [0,1], 1, 1/2); [t,y]
and got an approximate value of $y(1) \approx 1.126$.
As an additional exercise, you should (a) figure out how to generalize this method to approximate any definite integral whatsoever; (b) show that this Euler method approximation with a step size $h$ is the same as the approximation of the integral by a Riemann sum with box width $h$.

