
Solutions to Week 5 Homework

ASSIGNMENT 11.

2.7.20. Consider the initial value problem

y′ = 1− t+ y, y(t0) = y0.

We will show that the approximation generated by the Euler method converges to the actual
solution as the step size h decreases.

(a) Show that the exact solution is

y = φ(t) = (y0 − t0)et−t0 + t.

This is a linear differential equation, so we can solve it using the integrating factor method.
We rewrite it as

y′ − y = 1− t,
so the integrating factor is

µ(t) = exp

(∫
−1 dt

)
= e−t.

We compute:

e−ty′ − e−ty = e−t(1− t)
(e−ty)′ = e−t(1− t)

e−ty =

∫
(1− t)e−t dt =

∫
e−t dt−

∫
te−t dt

= −e−t −
∫
te−t dt.

This last integral can be computed by parts. Taking u = t and dv = e−t dt, we have
du = dt and v = −e−t, so that∫

te−t dt = −te−t +

∫
e−t dt = (−1− t)e−t + C.

Thus,
e−ty = te−t + C,

giving the general solution
y = t+ Cet.

Plugging in the initial condition y(t0) = y0, we obtain

y0 = t0 + Cet0

or
C = (y0 − t0)e−t0 .

This gives the solution to the equation:

y = φ(t) = (y0 − t0)et−t0 + t.
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(b) Using the Euler formula, show that

yk = (1 + h)yk−1 + h− htk−1, k = 1, 2, . . . . (1)

Here, (tk, yk) is the kth point obtained by Euler’s method with a step size of h. Euler’s
method says that, if the differential equation is y′ = f(t, y),

yk = f(tk−1, yk−1)h+ yk−1.

In this case, this means that

yk = (1− tk−1 + yk−1)h+ yk−1 = (1 + h)yk−1 + h− htk−1.

(d) Consider a fixed point t > t0 and for a given n choose h = (t − t0)/n. Then tn = t for
every n. Note also that h→ 0 as n→∞. By substituting for h in (1) and letting n→∞,
show that yn → φ(t) as n→∞.

Hint: limn→∞(1 + a/n)n = ea.

We assume the result from part (c) of this problem, that for any n,

yn = (1 + h)n(y0 − t0) + tn.

Since we have chosen h = (t− t0)/n, so that tn = t, this is equivalent to

yn =

(
1 +

t− t0
n

)n

(y0 − t0) + t.

Using the hint, we get
lim

n→∞
yn = et−t0(y0 − t0) + t.

But this is just the formula for φ(t) obtained in part (a).

ASSIGNMENT 12.

G. (a) If y′ = −2y + e−t, y(0) = 1 then compute y(1).

The equation is linear, so we can solve it with the integrating factor method. Writing

y′ + 2y = e−t,

we get an integrating factor of µ(t) = exp
(∫

2 dt
)

= e2t. The equation becomes

(e2ty)′ = e2t−t = et

e2ty =

∫
et dt = et + C

y = e−t + Ce−2t.

Since y(0) = 1, C must equal 0. Thus, y(t) = e−t and

y(1) = e−1 = 0.368.

(Since the next part of the problem asks about an accuracy of 0.05, three decimal places
are all that we’ll need.

(b) Experiment using the Euler Method (eul) with step sizes of the form h = 1/n to find the
smallest integer n which will give a value yn that approximates the above true solution at
t = 1 within 0.05.

I used the following MATLAB code, saved as problemG.m:
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function f = problemG(t,y)

f = -2*y + exp(-t);

end

and in the command line:

[t,y] = eul(’problemG’, [0,1], 1, 1/2); [t,y]

with 1/2 replaced by different choices of h.

When the step size is 1/2, eul returns a final y-value of 0.303. When the step size is 1/3,
eul returns a final y-value of 0.325, which is within 0.05 of the true value. So the smallest
value of n is 3.

Instead of choosing n by hand, one could also, example, write a for loop that tries different
values of n until it gets close enough to the real answer.

H. (a) If y′ = 2y − 3e−t, y(0) = 1 then compute y(1).

Again, we write
y′ − 2y = −3e−t

and multiply by the integrating factor e−2t to get

e−2ty =

∫
−3e−3t dt = e−3t + C

or
y = e−t + Ce2t.

Since y(0) = 1, we again have C = 0, so y = e−t and y(1) = 1/e ≈ 0.368.

(b) Experiment using the Euler Method (eul) with step sizes of the form h = 1/n to find the
smallest integer n which will give a value yn that approximates the above true solution at
t = 1 within 0.05.

I used the following MATLAB code, saved as problemH.m:

function f = problemH(t,y)

f = 2*y - 3*exp(-t);

end

and in the command line:

[t,y] = eul(’problemH’, [0,1], 1, 1/2); [t,y]

I found that h = 1/22 was the first to get within 0.05 of the correct answer, returning
y22 = 0.320.

The point of this and the last problem is hopefully clear: the rate of convergence of the
Euler method depends on the differential equation, not just its solution.

I. (a) Show that y(t) =
∫ t

0
e−u

2

du satisfies the initial value problem dy
dt = e−t

2

, y(0) = 0.

This is the fundamental theorem of calculus. If F (t) =
∫ t

a
f(u) du for some constant a,

and f is continuous on (a, b), then d
dtF (t) = f(t) for t ∈ (a, b). In this case, we have

d

dt

∫ t

0

e−u
2

du = e−t
2

,

as desired. Also,

y(0) =

∫ 0

0

e−u
2

du = 0.

Don’t get confused here. y is a function of t, not of u – u is only used to define the
integration. So you shouldn’t have had to ‘change variables’ from u to t or the like.
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(b) Use the Euler method (eul) with h = 1/2 to approximate the integral
∫ 2

0
e−u

2

du. The
point is to treat the integral as the solution to the above initial value problem, and use
the Euler method on that. My problemI.m was:

function f = problemI(t,y)

f = exp(-t^2);

end

I then wrote

[t,y] = eul(’problemI’, [0,1], 1, 1/2); [t,y]

and got an approximate value of y(1) ≈ 1.126.

As an additional exercise, you should (a) figure out how to generalize this method to
approximate any definite integral whatsoever; (b) show that this Euler method approxi-
mation with a step size h is the same as the approximation of the integral by a Riemann
sum with box width h.
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