Week 7 solutions

ASSIGNMENT 15.

3.3.17. Find the solution of the initial value problem. Sketch the graph of the solution and describe its behavior for increasing t.

$$
y^{\prime \prime}+4 y=0, \quad y(0)=0, y^{\prime}(0)=1 .
$$

The characteristic equation is

$$
r^{2}+4=0,
$$

which has complex conjugate roots,

$$
r= \pm 2 i
$$

This means that a general complex-valued solution to the problem is given by

$$
y=C_{1} e^{2 i t}+C_{2} e^{-2 i t}, \quad C_{1}, C_{2} \in \mathbb{C} .
$$

As usual, we can find a fundamental set of real-valued solutions by taking the real and imaginary part of either of the complex-valued solutions in the fundamental set $\left\{e^{2 i t}, e^{-2 i t}\right\}$. For example, we can define

$$
\begin{aligned}
& y_{1}=\operatorname{Re}\left(e^{2 i t}\right)=\cos (2 t), \\
& y_{2}=\operatorname{Im}\left(e^{2 i t}\right)=\sin (2 t) .
\end{aligned}
$$

As a reminder, $\operatorname{Im}\left(e^{2 i t}\right)$ is $\sin (2 t)$ and not $i \sin (2 t)$ (so that it is real-valued, not imaginary-valued); also, if we performed the same operations on $e^{-2 i t}$, we'd get scalar multiples of these two solutions.

So the general solution is

$$
y=C_{1} \cos (2 t)+C_{2} \sin (2 t)
$$

For this y, we have

$$
y(0)=C_{1}, \quad y^{\prime}(0)=2 C_{2} .
$$

So to solve the initial value problem, we put $C_{1}=0$ and $C_{2}=1 / 2$. Then

$$
y=\frac{1}{2} \sin (2 t)
$$

This solution oscillates forever as t increases, with amplitude $1 / 2$ and period π.

23. Consider the initial value problem

$$
3 u^{\prime \prime}-u^{\prime}+2 u=0, \quad u(0)=2, u^{\prime}(0)=0 .
$$

(a) Find the solution $u(t)$ of this problem.

The characteristic equation is

$$
3 r^{2}-r+2=0 .
$$

Using the quadratic formula, we obtain

$$
r=\frac{1 \pm \sqrt{1-24}}{6}=\frac{1 \pm i \sqrt{23}}{6}
$$

This means that a general real-valued solution is given by

$$
u=C_{1} e^{t / 6} \cos \left(\frac{\sqrt{23}}{6} t\right)+C_{2} e^{t / 6} \sin \left(\frac{\sqrt{23}}{6} t\right) .
$$

We have

$$
u(0)=C_{1}, \quad u^{\prime}(0)=\frac{C_{1}}{6}+C_{2} \frac{\sqrt{23}}{6}
$$

Solving with the given initial values, we get

$$
C_{1}=2, \quad C_{2}=\frac{-2}{\sqrt{23}} .
$$

So the answer is

$$
u=2 e^{t / 6} \cos \left(\frac{\sqrt{23}}{6} t\right)-\frac{2}{\sqrt{23}} e^{t / 6} \sin \left(\frac{\sqrt{23}}{6} t\right) .
$$

(b) For $t>0$, find the first time at which $|u(t)|=10$.

This should probably be done with Desmos or other computer software. I got $t \approx 14.106$.

ASSIGNMENT 16.

3.4.15. Consider the initial value problem

$$
4 y^{\prime \prime}+12 y^{\prime}+9 y=0, \quad y(0)=1, y^{\prime}(0)=-4
$$

(a) Solve the initial value problem and plot its solution for $0 \leq t \leq 5$.

The characteristic polynomial is

$$
4 r^{2}+12 r+9=0,
$$

which factors as

$$
(2 r+3)^{2}=0 .
$$

This has the repeated root $r=-3 / 2$. So the general solution is

$$
y=C_{1} e^{-3 t / 2}+C_{2} t e^{-3 t / 2} .
$$

We have $1=y(0)=C_{1}$, and $-4=y^{\prime}(0)=-3 C_{1} / 2+C_{2}$. Thus, the solution to the initial value problem is

$$
y=e^{-3 t / 2}-\frac{5}{2} t e^{-3 t / 2} .
$$

Here is a graph:

It appears that the solution crosses the t-axis once and then approaches zero asymptotically from the bottom.
(b) Determine where the solution takes the value zero.

We can solve the equation explicitly:

$$
0=e^{-3 t / 2}-\frac{5}{2} t e^{-3 t / 2},
$$

and dividing by $e^{-3 t / 2}$, which is never zero, we get

$$
0=1-5 t / 2
$$

or $t=2 / 5$. This is the only zero.
(c) Determine the coordinates $\left(t_{0}, y_{0}\right)$ of the minimum point.

We have

$$
y^{\prime}=-4 e^{-3 t / 2}+\frac{15}{4} t e^{-3 t / 2}
$$

This is zero when $0=-4+15 t / 4$, or $t=16 / 15$. Since this is the only critical point of the function, it must be the minimum shown on the graph above.
(d) Change the second condition to $y^{\prime}(0)=b$ and find the solution as a function of b. Then find the critical value of b that separates solutions that always remain positive from those that eventually become negative.
If $y^{\prime}(0)=b$ and $y(0)=1$, then the equation for y is

$$
y=e^{-3 t / 2}+(b+3 / 2) t e^{-3 t / 2} .
$$

This has a zero where $0=1+(b+3 / 2) t$, or $t=-1 /(b+3 / 2)$. For $b<-3 / 2$, this value of t is positive, and for $b>-3 / 2$, this value of t is negative. So for $b>-3 / 2, y$ never crosses the t-axis at a positive value of t, meaning that it is always positive for $t>0$. (The problem is a little imprecise in saying that the function "always remains positive", but this is the only reasonable way to interpret it.) So the critical value of b is $b=-3 / 2$. Note that for $b=-3 / 2$, the solution is never zero for any value of t, positive or negative.
25. Use the method of reduction of order to find a second solution of the differential equation.

$$
t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0, \quad t>0 ; y_{1}(t)=t^{-1}
$$

First check that y_{1} is actually a solution of the equation:

$$
t^{2} y_{1}^{\prime \prime}+3 t y_{1}^{\prime}+y_{1}=2 t^{2} \cdot t^{-3}-3 t \cdot t^{-2}+t^{-1}=0
$$

Now define $y_{2}=v y_{1}=t^{-1} v$. Then

$$
\begin{aligned}
y_{2}^{\prime} & =-t^{-2} v+t^{-1} v^{\prime} \\
y_{2}^{\prime \prime} & =2 t^{-3} v-2 t^{-2} v^{\prime}+t^{-1} v^{\prime \prime}
\end{aligned}
$$

Substituting into the equation gives

$$
0=2 t^{-1} v-2 v^{\prime}+t v^{\prime \prime}-3 t^{-1} v+3 v^{\prime}+t^{-1} v=v^{\prime}+t v^{\prime \prime}
$$

As expected, the terms involving v cancel out. Let $w=v^{\prime}$; then the equation is first-order in terms of w and separable, and we can solve it:

$$
\begin{aligned}
0 & =w+t w^{\prime} \\
-w & =t w^{\prime} \\
\int-\frac{1}{w} d w & =\int \frac{1}{t} d t \\
-\ln |w| & =\ln (t)+C \quad(t>0) \\
|w| & =A t^{-1} \quad(A>0) \\
w & =A t^{-1} \quad(A \text { arbitrary })
\end{aligned}
$$

Since $w=v^{\prime}$, we integrate this again to get $v=A \ln (t)+B$. One such solution is $v=\ln (t)$. Then $y_{2}=v y_{1}=t^{-1} \ln (t)$. (Note that the general solution to the equation is obtained by keeping the general solution for $v: y=A t^{-1} \ln (t)+B t^{-1}$.)

ASSIGNMENT 17.

3.5.15. Find the solution of the given initial value problem.

$$
y^{\prime \prime}+y^{\prime}-2 y=2 t, \quad y(0)=0, y^{\prime}(0)=1
$$

First, we solve the associated homogeneous equation,

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

The characteristic polynomial, $r^{2}+r-2$, has roots $r=-2$ and $r=1$. So the general solution is

$$
y=C_{1} e^{-2 t}+C_{2} e^{t}
$$

Now, apply the method of undetermined coefficients to find a particular solution to the inhomogeneous equation. Since the right-hand side is a polynomial in t of degree 1 , we should try substituting this for y. So let $y=A t+B$. Then $y^{\prime}=A$ and $y^{\prime \prime}=0$. We get

$$
y^{\prime \prime}+y^{\prime}-2 y=A-2 A t-2 B=2 t .
$$

Comparing coefficients, we see that $A=-1$ and $B=-1 / 2$. This gives the particular solution

$$
y_{p}=-t-1 / 2 .
$$

Thus, the general solution to the inhomogeneous equation is

$$
y=-t-1 / 2+C_{1} e^{-2 t}+C_{2} e^{t}
$$

We have $y(0)=-1 / 2+C_{1}+C_{2}=0$, and $y^{\prime}(0)=-1-2 C_{1}+C_{2}=1$. So $C_{1}=-1 / 2$ and $C_{2}=1$. So, the solution is

$$
y=-t-1 / 2-\frac{1}{2} e^{-2 t}+e^{t} .
$$

21(a) Determine a suitable form for $Y(t)$ if the method of undetermined coefficients is to be used.

$$
y^{\prime \prime}+3 y^{\prime}=2 t^{4}+t^{2} e^{-3 t}+\sin (3 t)
$$

First, solve the associated homogeneous equation. This is $y^{\prime \prime}+3 y^{\prime}=0$, and its solutions are $y=C_{1} e^{-3 t}+C_{2}$.
Next, let y_{1}, y_{2}, and y_{3} be solutions to the three inhomogeneous equations

$$
\begin{aligned}
y_{1}^{\prime \prime}+3 y_{1}^{\prime} & =2 t^{4} \\
y_{2}^{\prime \prime}+3 y_{2}^{\prime} & =t^{2} e^{-3 t} \\
y_{3}^{\prime \prime}+3 y_{3}^{\prime} & =\sin (3 t) .
\end{aligned}
$$

Then $y_{1}+y_{2}+y_{3}$ is a solution to the original equation. So it suffices to find the right form for the three separate equations above.
The right-hand side of the equation solved by y_{1} is a polynomial of degree 4 . So we should try a general polynomial of degree $4, y_{1}=A_{0} t^{4}+A_{1} t^{3}+A_{2} t^{2}+\cdots+A_{4}$. However, the last term, A_{4}, is a solution to the associated homogeneous equation,
so we will not be able to solve for all the coefficients of y_{1} this way. (Try it if you don't believe me.) To avoid the solutions to the associated homogeneous equation, we multiply by t :

$$
y_{1}=A_{0} t^{5}+A_{1} t^{4}+\cdots+A_{4} t .
$$

For y_{2}, we ought to try a polynomial of degree 2 times $e^{-3 t}$. Again, we will need to multiply by t to avoid the solution space to the associated homogeneous equation. We ought to use

$$
y_{2}=B_{0} t^{3} e^{-3 t}+B_{1} t^{2} e^{-3 t}+B_{2} t e^{-3 t} .
$$

Finally, for y_{3}, we should use a general linear combination of $\sin (3 t)$ and $\cos (3 t)$.

$$
y_{3}=C_{0} \sin (3 t)+C_{1} \cos (3 t) .
$$

So the appropriate form for y is
$y=A_{0} t^{5}+A_{1} t^{4}+\cdots+A_{4} t+B_{0} t^{3} e^{-3 t}+B_{1} t^{2} e^{-3 t}+B_{2} t e^{-3 t}+{ }_{0} \sin (3 t)+C_{1} \cos (3 t)$.
22(a) Determine a suitable form for $Y(t)$ if the method of undetermined coefficients is to be used.

$$
y^{\prime \prime}+y=t(1+\sin t) .
$$

The solutions to the associated homogeneous equation are $y=C_{1} \sin (t)+C_{2} \cos (t)$.
Like the previous problem, we should break this one into parts, one where the righthand side is t and one where it is $t \sin (t)$. If

$$
y_{1}^{\prime \prime}+y_{1}=t,
$$

then y_{1} will have the form

$$
y_{1}=A_{0} t+A_{1},
$$

a general linear polynomial in t. If

$$
y_{2}^{\prime \prime}+y_{2}=t \sin (t),
$$

then we want to try a general linear polynomial in t times a general linear combination of $\sin (t)$ and $\cos (t)$, i.e.,

$$
y_{2}=B_{0} t \sin (t)+B_{1} \sin (t)+B_{2} t^{2} \cos (t)+B_{3} \cos (t) .
$$

However, some of these terms overlap with the solution to the associated homogeneous equation. So we must multiply by t, giving

$$
y_{2}=B_{0} t^{2} \sin (t)+B_{1} t \sin (t)+B_{2} t^{2} \cos (t)+B_{3} t \cos (t) .
$$

Therefore,

$$
y=A_{0} t+A_{1}+B_{0} t^{2} \sin (t)+B_{1} t \sin (t)+B_{2} t^{2} \cos (t)+B_{1} t \cos (t) .
$$

The part involving the B 's is a general trig function times a general polynomial of degree 1.

