
Week 7 solutions

ASSIGNMENT 15.

3.3.17. Find the solution of the initial value problem. Sketch the graph of the solution and
describe its behavior for increasing t.

y′′ + 4y = 0, y(0) = 0, y′(0) = 1.

The characteristic equation is
r2 + 4 = 0,

which has complex conjugate roots,

r = ±2i.

This means that a general complex-valued solution to the problem is given by

y = C1e
2it + C2e

−2it, C1, C2 ∈ C.

As usual, we can find a fundamental set of real-valued solutions by taking the real
and imaginary part of either of the complex-valued solutions in the fundamental set
{e2it, e−2it}. For example, we can define

y1 = Re(e2it) = cos(2t),

y2 = Im(e2it) = sin(2t).

As a reminder, Im(e2it) is sin(2t) and not i sin(2t) (so that it is real-valued, not
imaginary-valued); also, if we performed the same operations on e−2it, we’d get scalar
multiples of these two solutions.

So the general solution is

y = C1 cos(2t) + C2 sin(2t).

For this y, we have
y(0) = C1, y′(0) = 2C2.

So to solve the initial value problem, we put C1 = 0 and C2 = 1/2. Then

y =
1

2
sin(2t).

This solution oscillates forever as t increases, with amplitude 1/2 and period π.
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23. Consider the initial value problem

3u′′ − u′ + 2u = 0, u(0) = 2, u′(0) = 0.

(a) Find the solution u(t) of this problem.

The characteristic equation is

3r2 − r + 2 = 0.

Using the quadratic formula, we obtain

r =
1±
√

1− 24

6
=

1± i
√

23

6
.

This means that a general real-valued solution is given by

u = C1e
t/6 cos

(√
23

6
t

)
+ C2e

t/6 sin

(√
23

6
t

)
.

We have

u(0) = C1, u′(0) =
C1

6
+ C2

√
23

6
.

Solving with the given initial values, we get

C1 = 2, C2 =
−2√

23
.

So the answer is

u = 2et/6 cos

(√
23

6
t

)
− 2√

23
et/6 sin

(√
23

6
t

)
.

(b) For t > 0, find the first time at which |u(t)| = 10.

This should probably be done with Desmos or other computer software. I got
t ≈ 14.106.

ASSIGNMENT 16.

3.4.15. Consider the initial value problem

4y′′ + 12y′ + 9y = 0, y(0) = 1, y′(0) = −4.
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(a) Solve the initial value problem and plot its solution for 0 ≤ t ≤ 5.

The characteristic polynomial is

4r2 + 12r + 9 = 0,

which factors as
(2r + 3)2 = 0.

This has the repeated root r = −3/2. So the general solution is

y = C1e
−3t/2 + C2te

−3t/2.

We have 1 = y(0) = C1, and −4 = y′(0) = −3C1/2 + C2. Thus, the solution to
the initial value problem is

y = e−3t/2 − 5

2
te−3t/2.

Here is a graph:

It appears that the solution crosses the t-axis once and then approaches zero
asymptotically from the bottom.

(b) Determine where the solution takes the value zero.

We can solve the equation explicitly:

0 = e−3t/2 − 5

2
te−3t/2,

and dividing by e−3t/2, which is never zero, we get

0 = 1− 5t/2

or t = 2/5. This is the only zero.
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(c) Determine the coordinates (t0, y0) of the minimum point.

We have

y′ = −4e−3t/2 +
15

4
te−3t/2.

This is zero when 0 = −4 + 15t/4, or t = 16/15. Since this is the only critical
point of the function, it must be the minimum shown on the graph above.

(d) Change the second condition to y′(0) = b and find the solution as a function of
b. Then find the critical value of b that separates solutions that always remain
positive from those that eventually become negative.

If y′(0) = b and y(0) = 1, then the equation for y is

y = e−3t/2 + (b+ 3/2)te−3t/2.

This has a zero where 0 = 1 + (b + 3/2)t, or t = −1/(b + 3/2). For b < −3/2,
this value of t is positive, and for b > −3/2, this value of t is negative. So for
b > −3/2, y never crosses the t-axis at a positive value of t, meaning that it
is always positive for t > 0. (The problem is a little imprecise in saying that
the function “always remains positive”, but this is the only reasonable way to
interpret it.) So the critical value of b is b = −3/2. Note that for b = −3/2, the
solution is never zero for any value of t, positive or negative.

25. Use the method of reduction of order to find a second solution of the differential
equation.

t2y′′ + 3ty′ + y = 0, t > 0; y1(t) = t−1.

First check that y1 is actually a solution of the equation:

t2y′′1 + 3ty′1 + y1 = 2t2 · t−3 − 3t · t−2 + t−1 = 0.

Now define y2 = vy1 = t−1v. Then

y′2 = −t−2v + t−1v′,

y′′2 = 2t−3v − 2t−2v′ + t−1v′′.

Substituting into the equation gives

0 = 2t−1v − 2v′ + tv′′ − 3t−1v + 3v′ + t−1v = v′ + tv′′.

As expected, the terms involving v cancel out. Let w = v′; then the equation is
first-order in terms of w and separable, and we can solve it:

0 = w + tw′

−w = tw′∫
− 1

w
dw =

∫
1

t
dt

− ln |w| = ln(t) + C (t > 0)

|w| = At−1 (A > 0)

w = At−1 (A arbitrary)

Since w = v′, we integrate this again to get v = A ln(t) + B. One such solution is
v = ln(t). Then y2 = vy1 = t−1 ln(t). (Note that the general solution to the equation
is obtained by keeping the general solution for v: y = At−1 ln(t) +Bt−1.)
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ASSIGNMENT 17.

3.5.15. Find the solution of the given initial value problem.

y′′ + y′ − 2y = 2t, y(0) = 0, y′(0) = 1.

First, we solve the associated homogeneous equation,

y′′ + y′ − 2y = 0.

The characteristic polynomial, r2 + r− 2, has roots r = −2 and r = 1. So the general
solution is

y = C1e
−2t + C2e

t.

Now, apply the method of undetermined coefficients to find a particular solution to
the inhomogeneous equation. Since the right-hand side is a polynomial in t of degree
1, we should try substituting this for y. So let y = At+B. Then y′ = A and y′′ = 0.
We get

y′′ + y′ − 2y = A− 2At− 2B = 2t.

Comparing coefficients, we see that A = −1 and B = −1/2. This gives the particular
solution

yp = −t− 1/2.

Thus, the general solution to the inhomogeneous equation is

y = −t− 1/2 + C1e
−2t + C2e

t.

We have y(0) = −1/2 +C1 +C2 = 0, and y′(0) = −1− 2C1 +C2 = 1. So C1 = −1/2
and C2 = 1. So, the solution is

y = −t− 1/2− 1

2
e−2t + et.

21(a) Determine a suitable form for Y (t) if the method of undetermined coefficients is to be
used.

y′′ + 3y′ = 2t4 + t2e−3t + sin(3t).

First, solve the associated homogeneous equation. This is y′′ + 3y′ = 0, and its
solutions are y = C1e

−3t + C2.

Next, let y1, y2, and y3 be solutions to the three inhomogeneous equations

y′′1 + 3y′1 = 2t4,

y′′2 + 3y′2 = t2e−3t,

y′′3 + 3y′3 = sin(3t).

Then y1 + y2 + y3 is a solution to the original equation. So it suffices to find the right
form for the three separate equations above.

The right-hand side of the equation solved by y1 is a polynomial of degree 4. So we
should try a general polynomial of degree 4, y1 = A0t

4 + A1t
3 + A2t

2 + · · · + A4.
However, the last term, A4, is a solution to the associated homogeneous equation,
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so we will not be able to solve for all the coefficients of y1 this way. (Try it if you
don’t believe me.) To avoid the solutions to the associated homogeneous equation, we
multiply by t:

y1 = A0t
5 +A1t

4 + · · ·+A4t.

For y2, we ought to try a polynomial of degree 2 times e−3t. Again, we will need to
multiply by t to avoid the solution space to the associated homogeneous equation. We
ought to use

y2 = B0t
3e−3t +B1t

2e−3t +B2te
−3t.

Finally, for y3, we should use a general linear combination of sin(3t) and cos(3t).

y3 = C0 sin(3t) + C1 cos(3t).

So the appropriate form for y is

y = A0t
5 +A1t

4 + · · ·+A4t+B0t
3e−3t +B1t

2e−3t +B2te
−3t +0 sin(3t) + C1 cos(3t).

22(a) Determine a suitable form for Y (t) if the method of undetermined coefficients is to be
used.

y′′ + y = t(1 + sin t).

The solutions to the associated homogeneous equation are y = C1 sin(t) + C2 cos(t).

Like the previous problem, we should break this one into parts, one where the right-
hand side is t and one where it is t sin(t). If

y′′1 + y1 = t,

then y1 will have the form
y1 = A0t+A1,

a general linear polynomial in t. If

y′′2 + y2 = t sin(t),

then we want to try a general linear polynomial in t times a general linear combination
of sin(t) and cos(t), i.e.,

y2 = B0t sin(t) +B1 sin(t) +B2t
2 cos(t) +B3 cos(t).

However, some of these terms overlap with the solution to the associated homogeneous
equation. So we must multiply by t, giving

y2 = B0t
2 sin(t) +B1t sin(t) +B2t

2 cos(t) +B3t cos(t).

Therefore,

y = A0t+A1 +B0t
2 sin(t) +B1t sin(t) +B2t

2 cos(t) +B1t cos(t).

The part involving the B’s is a general trig function times a general polynomial of
degree 1.

6


