Week 8 solutions

ASSIGNMENT 18.

3.6.15. Verify that the given functions y_{1} and y_{2} satisfy the corresponding homogeneous equation. Then find a particular solution of the given nonhomogeneous equation.

$$
t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{2 t}, t>0 ; \quad y_{1}(t)=1+t, y_{2}(t)=e^{t}
$$

We have

$$
t y_{1}^{\prime \prime}-(1+t) y_{1}^{\prime}+y_{1}=t \cdot 0-(1+t) \cdot 1+(1+t)=0
$$

and

$$
t y_{2}^{\prime \prime}-(1+t) y_{2}^{\prime}+y_{2}=t e^{t}-(1+t) e^{t}+e^{t}=0
$$

So the general solution to the homogeneous equation is

$$
y=C_{1}(1+t)+C_{2} e^{t} .
$$

Now define

$$
y=u_{1} \cdot(1+t)+u_{2} e^{t}
$$

where u_{1} and u_{2} are unknown functions. We will impose the relation

$$
u_{1}^{\prime} \cdot(1+t)+u_{2}^{\prime} e^{t}=0
$$

Then

$$
y^{\prime}=u_{1}+u_{2} e^{t},
$$

and

$$
y^{\prime \prime}=u_{1}^{\prime}+u_{2}^{\prime} e^{t}+u_{2} e^{t}
$$

Substituting these into the inhomogeneous equation gives

$$
t u_{1}^{\prime}+t u_{2}^{\prime} e^{t}+t u_{2} e^{t}-(1+t)\left(u_{1}+u_{2} e^{t}\right)+(1+t) u_{1}+u_{2} e^{t}=t^{2} e^{2 t}
$$

or

$$
u_{1}^{\prime}+u_{2}^{\prime} e^{t}=t e^{2 t}
$$

where all the terms involving u_{1} and u_{2} cancel. So $u_{1}^{\prime}=t e^{2 t}-u_{2}^{\prime} e^{t}$. Substituting this into the assumed relation

$$
(1+t) u_{1}^{\prime}+u_{2}^{\prime} e^{t}=0
$$

gives

$$
(1+t) t e^{2 t}-t e^{t} u_{2}^{\prime}=0
$$

or

$$
u_{2}^{\prime}=(1+t) e^{t} .
$$

This means that $u_{1}^{\prime}=-e^{2 t}$. Integrating, we get

$$
u_{1}=-\frac{1}{2} e^{2 t} \text { and } u_{2}=t e^{t}
$$

(There are constants of integration here, but since we just want one particular solution, we can choose them to be zero.) Thus,

$$
y=(1+t) u_{1}+e^{t} u_{2}=-\frac{1+t}{2} e^{2 t}+t e^{2 t}=\frac{t-1}{2} e^{2 t} .
$$

J. Given that the general solution to $t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=0$ is $y=C_{1} t+C_{2} t^{4}$, solve the following initial value problem:

$$
t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=-2 t^{2}, \quad y(1)=2, \quad y^{\prime}(1)=0
$$

Although this is not a constant-coefficient problem, since we know the general solution to the associated homogeneous equation we can solve the inhomogeneous equation with the method of variation of parameters.
Put $y=u_{1} t+u_{2} t^{4}$, and assume that

$$
u_{1}^{\prime} t+u_{2}^{\prime} t^{4}=0
$$

Then

$$
\begin{aligned}
y^{\prime} & =u_{1}+4 u_{2} t^{3}, \\
y^{\prime \prime} & =u_{1}^{\prime}+4 u_{2}^{\prime} t^{3}+12 u_{2} t^{2} .
\end{aligned}
$$

We find that

$$
\begin{array}{r}
t^{2} y^{\prime \prime}-4 t y^{\prime}+4 y=12 u_{2} t^{4}-4 u_{1} t-16 u_{2} t^{4}+4 u_{1} t+4 u_{2} t^{4}+t^{2} u_{1}^{\prime}+4 t^{5} u_{2}^{\prime} \\
=t^{2}\left(u_{1}^{\prime}+4 u_{2}^{\prime} t^{3}\right) .
\end{array}
$$

Thus,

$$
u_{1}^{\prime}+4 u_{2}^{\prime} t^{3}=-2
$$

so that $u_{1}^{\prime}=-2-4 u_{2}^{\prime} t^{3}$. Substituting this into the assumption equation gives

$$
0=u_{1}^{\prime} t+u_{2}^{\prime} t^{4}=-2 t-3 u_{2}^{\prime} t^{4}
$$

or

$$
u_{2}^{\prime}=-\frac{2}{3} t^{-3}
$$

Thus, $u_{2}=\frac{1}{3} t^{-2}+C_{2}$. Also,

$$
u_{1}^{\prime}=-2+\frac{8}{3}=\frac{2}{3},
$$

so $u_{1}=\frac{2}{3} t+C_{1}$. So the general solution to the equation is

$$
y=C_{1} t+C_{2} t^{4}+\frac{1}{3} t^{2}+\frac{2}{3} t^{2}=C_{1} t+C_{2} t^{4}+t^{2} .
$$

For this general $y, y(1)=C_{1}+C_{2}+1$ and $y^{\prime}(1)=C_{1}+4 C_{2}+2$. Solving for C_{1} and C_{2} gives $C_{1}=2, C_{2}=-1$. Thus,

$$
y=2 t+t^{2}-t^{4} .
$$

