
Week 9 solutions

(Assignment 19 had no hand-graded component.)

ASSIGNMENT 20.

3.7.9. A mass of 20 g stretches a spring 5 cm. Suppose that the mass is also attached to a
viscous damper with a damping constant of 400 dyn·s/cm. If the mass is pulled down
an additional 2 cm and then released, find its position u at any time t. Plot u versus
t.

Note: This problem is written in the CGS unit system, which is a rescaling of the SI
system of metric units, taking centimeters, grams, and seconds as the fundamental
units. A dyne, dyn, is the unit of force, equal to 10−5 N or 1 g · cm/s2. It is fine to
convert to SI units, to stick with CGS units, or to use a hybrid of the two, as long as
you’re consistent and convert where necessary. I will stick with CGS, meaning that
g = 980 cm/s2.

First, we calculate the spring constant, using the equation mg = kL. We get

k = mg/L = 20 · 980/5 = 3920 g/s2.

The equation for the motion of the spring is then

20u′′ + 400u′ + 3920u = 0,

where u is measured in cm below equilibrium, and time is measured in seconds. We
can simplify this to

u′′ + 20u′ + 196u = 0.

The roots of the characteristic equation are

r = −10± 4
√

6i,

so the general (real-valued) solution is

u = C1e
−10t cos(4

√
6t) + C2e

−10t sin(4
√

6t) [cm].

Note that 4
√

6 ≈ 9.798. We calculate that

u′ = (−10C1 + 4
√

6C2)e
−10t cos(4

√
6t) + (−4

√
6C1 − 10C2)e

−10t sin(4
√

6t).

The initial conditions are u(0) = 2, u′(0) = 0, so C1 = 2, C2 = 5/
√

6 ≈ 2.041. So the
solution is

u = 2e−10t cos(4
√

6t) +
5√
6
e−10t sin(4

√
6t).
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While not overdamped (there are still cosine and sine terms), the spring is very heavily
damped, and the oscillations are not really visible on this graph.

Determine the quasi frequency and the quasi period.

The quasi frequency is just the frequency at which the cosine and sine functions
appearing in the formula for u oscillate. So it is 4

√
6 Hz. The quasi period is

2π/4
√

6 s ≈ 0.6413 s.

Determine the ratio of the quasi period to the period of the corresponding undamped
motion.

If the motion were undamped, it would be described by the differential equation

u′′ + 196u = 0.

The roots of the characteristic polynomial are purely imaginary, r = ±14i, and the
general solution is

u = C1 cos(14t) + C2 sin(14t).

No matter the initial conditions, this oscillates with frequency 14 Hz and period 2π/14.
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The ratio of damped quasi period to undamped period is

Tdamped

Tundamped
=

2π/4
√

6

2π/14
=

14

4
√

6
≈ 1.429.

The undamped spring oscillates quite a bit faster than the damped spring. This graph
compares the damped spring with an undamped spring moving with the same initial
conditions:

Also find the time τ such that |u(t)| < 0.05 cm for all t > τ .

I did this with Desmos. The absolute value of u stays below 0.05 cm after the first
time it crosses this line, at t = 0.2246.

28. The position of a certain undamped spring-mass system satisfies the initial value prob-
lem

u′′ + 2u = 0, u(0) = 0, u′(0) = 2.

(a) Find the solution of this initial value problem.

The characteristic polynomial, r2+2, has roots r = ±
√

2i. So the general solution
is u = C1 cos(

√
2t)+C2 sin(

√
2t). We have u(0) = C1 = 0 and u′(0) =

√
2C2 = 2,

so the solution to the initial value problem is

u =
√

2 sin(
√

2t).

(b) Plot u versus t and u′ versus t on the same axes.

Here is a graph:
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(c) Plot u′ versus u; that is, plot u(t) and u′(t) parametrically with t as the parameter.
. . . What is the direction of motion in the phase plot as t increases?

I did this on Desmos by entering the parametric equations:

(
√

2 sin(
√

2t), 2 cos(
√

2t))

and then adjusting the range for t to get the complete, closed curve.

As t increases starting from 0, which corresponds to (u, u′) = (0, 2), u, which is
a sine function, starts to increase, and u′, which is a cosine function, starts to
decrease. So the point moves clockwise around the ellipse. (This is with u as the
x-axis and u′ as the y-axis; if you switch the axes, you get the opposite answer.)
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These graphs can be useful ways of visualizing solutions to second-order equa-
tions. Here’s a similar graph for a damped spring:

ASSIGNMENT 21.

3.8.7. (a) Find the solution to Problem 5.

Problem 5 reads:

A mass weighing 4 lb stretches a spring 1.5 in. The mass is given a positive
displacement of 2 in from its equilibrium position and released with no initial
velocity. Assuming that there is no damping and that the mass is acted on by an
external force of 2 cos 3t lb, formulate the initial value problem describing the
motion of the mass.

Since the mass weighs 4 lb (a unit of force), its mass is

m = 4 lb/g = 4 lb/(32 ft/s2) = 0.125 slug.

(A slug is an imperial unit of mass, equal to 1 lb · s2/ft.) The spring constant is

k = mg/L = 4 lb/(1/8 ft) = 32 lb/ft.

So the initial value problem is

0.125u′′ + 32u = 2 cos(3t), u(0) = 1/6, u′(0) = 0.

Here time is measured in seconds and u is measured in feet.

Now we solve the problem. Multiplying through by 8 gives

u′′ + 256u = 16 cos(3t).

The roots of the characteristic equation are r = ±16i. So the general solution to
the associated homogeneous equation,

u′′ + 256u = 0,
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is
u = C1 cos(16t) + C2 sin(16t).

We solve the inhomogeneous equation using undetermined coefficients. Suppose
the solution has the form

u = A cos(3t) +B sin(3t).

Then u′′ = −9A cos(3t)− 9B sin(3t). Substituting into the inhomogeneous equa-
tion gives

247A cos(3t) + 247B sin(3t) = 16 cos(3t).

So B = 0 and A = 16/247. Thus, the general solution to the inhomogeneous
equation is

u =
16

247
cos(3t) + C1 cos(16t) + C2 sin(16t).

We have u(0) = 16/247 + C1 and u′(0) = 16C2. So C2 = 0 and C1 = 1/6 −
16/247 ≈ 0.1019 ft. We obtain

u = 0.1019 cos(16t) + 0.0648 cos(3t).

(b) Plot the graph of the solution.

(c) If the given external force is replaced by a force 4 sinωt of frequency ω, find the
value of ω at which resonance occurs.

Since the spring is undamped, the resonant frequency is the natural frequency,
ω = 16 Hz. Notice that if we were to solve the inhomogeneous equation

u′′ + 256u = 4 sin(16t)

using undetermined coefficients, we would have to get a ‘resonant’ term of the
form At cos(16t) or At sin(16t), because cos(16t) and sin(16t) are solutions of
the associated homogeneous equation. (You should try solving it, and graphing
the solution, if you’re unconvinced.) If the spring were damped, the resonant
frequency would differ slightly from the natural frequency – compare Figure
3.8.2, euqation (14) in section 3.8, and the surrounding discussion in the book.
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