
MA303 review sheet

1 “Chapter 0”

• What is a differential equation? What does it mean for a function to solve a differential
equation?

• What does it mean for a differential equation to be linear/nonlinear/homogeneous?

• How do you translate between real-world situations and differential equations?

• You should be comfortable with: complex numbers, integration techniques including
integration by parts, trig identities, partial derivatives.

• You should also know how to solve linear homogeneous ODEs with constant coefficients
(though this can be done with the techniques from chapter 5).

• . . . and how to solve some nonhomogeneous ODEs, particularly with the method of
undetermined coefficients.

2 Chapter 5: Linear Systems

• Solve linear systems of differential equations, of the form

x′ = Ax.

– Start by finding the eigenvalues and eigenvectors of A: that is, the pairs (λ,v)
such that

Av = λv.

– A real eigenvalue corresponds to an exponential solution

x = veλt.

– A complex eigenvalue works exactly the same way, giving a complex-valued
solution. However, if A has real entries, its nonreal eigenvalues occur in conjugate
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pairs, and one can find real-valued solutions by taking the real and imaginary
part:

x1 = Re(veλt),x2 = Im(veλt).

These can be computed using Euler’s formula

ea+ib = ea(cos(b) + i sin(b)),

giving you solutions that are exponential times trigonometric.

– Repeated eigenvalues:

(i) If an eigenvalue repeated k times has k linearly independent eigenvectors,
then there’s nothing to worry about: you can use the above methods to find
k linearly independent solutions associated to the eigenvalue.

(ii) Otherwise, you need to look for generalized eigenvectors, which are solutions
to (A−λI)rv = 0. The set of generalized eigenvectors forms a k-dimensional
vector space.

(iii) Suppose v1 satisfies (A− λI)rv1 = 0 but not (A− λI)r−1v1 = 0. Let

v2 = (A− λI)v1, . . . ,vr = (A− λI)r−1v1.

Then the following is a solution to x′ = Ax:

x(t) =

(
tr−1

(r − 1)!
vr + · · ·+ tv2 + v1

)
eλt.

(iv) In the 2×2 case, let v be an eigenvector of A with eigenvalue λ. Let w satisfy

(A− λI)w = v.

Then two linearly independent solutions are

x1(t) = veλt, x2(t) = (tv + w) eλt.

• Understand how to represent solutions to a system graphically, either as a phase plane
or as graphs of the various coordinates with respect to time.

• Applications: damped and undamped harmonic oscillators. Two examples we’ve seen
several times are spring-mass systems and RLC circuits.

3 Chapter 6: Nonlinear systems

• The behavior of solutions to linear systems around the origin depends on the eigenval-
ues. See the table on the next page.
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Name How do the solutions behave? When does it happen?

Source Leave the origin as t→∞ Eigenvalues have real parts
> 0

Sink Approach the origin as t →
∞

EIgenvalues have real parts
< 0

Saddle point Approach the origin along
one line, then leave along an-
other

One positive and one nega-
tive eigenvalue

Proper node Approach/leave along all
lines through the origin

Repeated nonzero eigen-
value with a full (2-
dimensional) space of
eigenvectors

Improper
node

Approach/leave along one
line

Real nonzero eigenvalues
and not a proper node

Spiral point Approach/leave along spi-
rals

Complex eigenvalues with
nonzero real parts

Center Orbit the origin along el-
lipses

Complex eigenvalues with
zero real part

Joker’s trick If zero is an eigenvalue, be
careful and keep your wits
about you

Zero is an eigenvalue

Stable Solutions that start close to
the origin stay close to the
origin

Nodal or spiral sink, or cen-
ter

Unstable Not stable Nodal or spiral source, or
saddle point

Asymptotically
stable

Solutions that start close to
the origin approach the ori-
gin as t→∞

Nodal or spiral sink
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• Now consider nonlinear systems of the form

x′ = F (x, y),

y′ = G(x, y).

A critical point of the system is a point (x, y) where x′ = y′ = 0. The same sort of
analysis can be used to describe behavior close to the critical point.

• The Jacobian of the system is the matrix

J(x, y) =

(
Fx Fy
Gx Gy

)
.

• Let (xc, yc) be a critical point of the system. We say that the system is almost linear
there if (i) F and G have continuous first partial derivatives at (xc, yc), (ii) (xc, yc) is
an isolated critical point, and (iii) zero is not an eigenvalue of J(xc, yc). In this case,
the system has a Taylor expansion(

u′

v′

)
= J(xc, yc)

(
u
v

)
+

(
r(u, v)
s(u, v)

)
,

where u = x− xc, v = y − yc, and r and s are “remainder” functions satisfying

lim
(u,v)→(0,0)

r(u, v)√
u2 + v2

= lim
(u,v)→(0,0)

s(u, v)√
u2 + v2

= 0.

The linearization of the original system at (xc, yc) is the linear system(
u′

v′

)
= J(xc, yc)

(
u
v

)
.

• If the nonlinear system is almost linear, its linearization approximates it well near the
critical point. In particular, the critical point of the nonlinear system is of the same
type and stability as the critical point of the linearization except in two special cases:

(i) If the linearization has a center (complex conjugate eigenvalues with zero real
part), the nonlinear system can have a center or a stable or unstable spiral point.

(ii) If the linearization has a node with equal real eigenvalues, the nonlinear system
can have a node or a spiral point, but with the same stability as the node in the
linearization.

• You should be able to sketch and interpret phase planes (graphs of y versus x) and
graphs of x and y versus t.
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• Turn higher-order ODEs into first-order systems, and vice versa. This is particularly
important for mechanical systems, which are often given as second-order ODEs or
systems thereof.

• Application: interacting species.

(a) The predator-prey model.

x′ = ax− pxy,
y′ = −by + qxy,

where x is the prey population, y is the predator population, and a, b, p, q are
positive constants. This has a nonzero critical point at (b/q, a/p), and solutions
orbit it stably with angular frequency

√
ab.

(b) The competing species model.

x′ = a1x− b1x2 − c1xy,
y′ = a2y − b2y2 − c2xy,

where x and y are the populations of the two species and the other numbers
are positive constants. The two populations grow logistically on their own but
also compete over resources, leading to nesgative effects of their interaction. The
system has four critical points: one at the origin, two of the form (Kx, 0) and
(0, Ky) at which one species is extinct and the other is at carrying capacity, and
a fourth where both species have nonzero population. The fourth critical point
is an unstable saddle point if c1c2 > b1b2, and an asymptotically stable node if
c1c2 = b1b2. In the unstable case, which species survives and which goes extinct
depends on the species’ initial values.

(c) Other examples. You should be able to apply this sort of reasoning to other
situations. What if the species in (b) cooperate (so that the negative terms −c1xy,
−c2xy are replaced by positive ones)? What if the logistic terms in (b) are added
into the predator-prey model of (a)? What if one species is a scavenger that
reproduces not based on the other species’ population, but rather its death rate?
What if there are more than two species forming a food chain or food network?

• Application: nonlinear mechanics.

(a) Nonlinear springs.
mx′′ = −kx+ βx3,

where k is the spring constant, m is the mass, and β is another constant (negative
for a soft spring, positive for a hard spring). There could also be damping. In
this undamped case, the hard spring still has a single critical point at the origin
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(a center), while the soft spring has additional saddle points at nonzero values of
x. One useful technique was integrating

mv dv + (kx− βx3) dx = 0

to find a constant energy value

1

2
mv2 +

1

2
kx2 − 1

4
βx4 = E.

(b) Nonlinear pendulums.

θ′′ +
g

L
sin(θ) = 0,

where θ is the angle of the pendulum (chosen so that θ = 0 when the pendulum
is at the bottom of its swing). This has a stable critical point at θ = 0 and an
unstable one at θ = π. Again, there could also be damping.

4 Chapter 9: Fourier series

• Know when functions are periodic, and what their periods are. A period is any nonzero
number p such that f(x+ p) = f(x) for all p.

• Know when functions are piecewise smooth. A function f(t) is piecewise smooth on
an interval [a, b] if we can partition the interval as

a = t0 < t1 < · · · < tn−1 < tn = b

such that f is continuously differentiable on each subinterval [ti, ti+1]; the one-sided
limits

f(ti+) = lim
t→t+i

f(t) and f(ti−) = lim
t→t−i

f(t)

are well-defined and finite (at a and b, we only care about the side that’s within the
interval); and likewise for the one-sided limits of f ′.

• A 2L-periodic function f(t) has a Fourier series

f(t) ∼ a0
2

+
∞∑
n=1

(
an cos

(
nπt

L

)
+ bn sin

(
nπt

L

))
.

The coefficients are defined by

an =
1

L

∫ L

−L
f(t) cos

(
nπt

L

)
dt,

bn =
1

L

∫ L

−L
f(t) sin

(
nπt

L

)
dt.
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• Convergence theorem: if f is periodic and piecewise smooth, then its Fourier series
converges to f(t) at each t where f is continuous, and to 1

2
(f(t+) + f(t−)) at each

point where f is discontinuous.

• Differentiation theorem: if f is periodic, piecewise smooth, piecewise twice dif-
ferentiable, and continuous everywhere, then we can find the Fourier series for f ′ by
differentiating term by term. The key example where this fails is the square wave.

• Integration theorem: if f is 2L-periodic and piecewise continuous with Fourier
coefficients an and bn, then∫ t

0

f(s) ds =
a0t

2
+
∞∑
N=1

(
anL

nπ
sin

(
nπt

L

)
− bnL

nπ

(
cos

(
nπt

L

)
− 1

))
.

• If f is odd (f(−x) = −f(x)) and 2L-periodic, its Fourier series is a sine series, with

an = 0, bn =
2

L

∫ L

0

f(t) sin

(
nπt

L

)
dt.

• If f is even (f(−x) = f(x)) and 2L-periodic, its Fourier series is a cosine series, with

an =
2

L

∫ L

0

f(t) cos(

(
nπt

L

)
dt.

• More generally, you’ll find it helpful to be comfortable manipulating integrals of peri-
odic functions, and functions with nice symmetry (like even and odd functions).

• Application: periodically forced, undamped harmonic oscillators.

mx′′ + kx = F (t).

– If F (t) is a simple sine or cosine function, you can solve this with the method of
undetermined coefficients. In

mx′′ + kx = A cos(ωt),

look for a solution of the form xP = B cos(ωt) and solve for B. Then the general
solution is x = C1x1 + C2x2 + xP , where C1x1 + C2x2 is the general solution to
the associated homogeneous equation

mx′′ + kx = 0.

xP is the steady periodic solution to the problem.
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– If F (t) is a more general piecewise smooth periodic function, such as a square
or triangle wave, write F as a Fourier series, do the above for each term of the
Fourier series, and combine them. That is, if

F (t) ∼ a0
2

+
∞∑
n=1

(
an cos

(
nπt

L

)
+ bn sin

(
nπt

L

))
,

and xAn , resp. xBn , resp. x0, is the steady periodic response to the term an cos
(
nπt
L

)
,

resp. bn sin
(
nπt
L

)
, resp. a0/2, then the general solution is

x = C1x1 + C2x2 + x0 +
∞∑
n=1

(xAn + xBn ).

– The oscillator described by mx′′ + kx has a natural (angular) frequency ω0 =√
k/m. This is the frequency of its unforced oscillations. If F (t) has a Fourier

series term with frequency close to ω0, that term will provoke a large response.

– For a term with frequency exactly equal to ω0,

mx′′ + kx = A cos(ω0t),

one instead looks for a solution of the form x = Bt sin(ω0t) + Ct cos(ω0t). These
solutions are not periodic, but instead have a steadily growing amplitude. This
is called pure resonance.

• Application: periodically forced, damped harmonic oscillators.

mx′′ + γx′ + kx = F (t).

This is the same as the previous case, except that the method of undetermined coeffi-
cients is more complicated. If the right-hand side is A cos(ωt), one generally looks for
a steady periodic solution of the form B cos(ωt) + C sin(ωt). This can also be written
as R cos(ωt− δ), meaning that the response is phase-shifted from the forcing function.

5 Chapter 9, part 2: PDEs

• Recognize when a problem consisiting of a PDE with some boundary conditions is
linear and homogeneous. This means that, if y1 and y2 are solutions to the problem,
so is any linear combination C1y1 + C2y2.

• The heat equation in one dimension.

ut = Kuxx,
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where u(x, t) is the temperature distribution on a laterally insulated rod, and K is the
thermal diffusivity of the rod. We only solved this in tandem with various boundary
conditions. One solves it by separating variables. Assume that u is of the form
X(x)T (t). Then the heat equation says

X(x)T ′(t) = KX ′′(x)T (t),

or
X ′′(x)

X(x)
=

T ′(t)

KT (t)
= −λ.

Since each side is independent of one of the two variables, they must both be constant.
The boundary conditions then give conditions on X, allowing you to specify the values
λ such that

X ′′ + λX = 0 (together with the boundary conditions)

has a nontrivial solution. These values λn are the eigenvalues of the problem, and
the corresponding solutions Xn are the eigenfunctions. Then also solve

T ′n + λnKTn = 0,

to get “building block solutions”

un(x, t) = Xn(x)Tn(t).

The general solution is then

u =
∑

CnXnTn.

– What does it mean to say that this is a general solution? It means that if we
specify an initial distribution f(x) = u(x, 0), there’s a unique solution u of this
form with initial values f(x). In other words, we can choose Cn so that

f(x) =
∞∑
n=1

CnXn(x)Tn(0).

Typically, we can do this either by using the theory of Fourier series, or Sturm-
Liouville theory (see below).

– Two early cases we looked at: if the boundary conditions say u(0, t) = u(L, t) = 0
(the ends are held at temperature zero), then the general solution is

u(x, t) =
∞∑
n=1

Cn sin
(nπx
L

)
exp

(
−Kn2π2t

L2

)
.

If the ends are held at arbitrary fixed temperatures, you can get the general
solution by adding the appropriate linear function of x to the above equation.
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– If the boundary conditions say ux(0, t) = ux(L, t) = 0 (the ends are insulated),
then the general solution is

u(x, t) = C0 +
∞∑
n=1

Cn cos
(nπx
L

)
exp

(
−Kn2π2t

L2

)
.

– You’ve seen a few more complicated cases, including some involving heat transfer
through the ends, and some where the boundary conditions are different at the
two ends.

– You should also mentally prepare yourself for problems like this where there’s
more than one linearly independent eigenfunction for a single eigenvalue.

• The wave equation in one dimension.

ytt = v2yxx

where y(x, t) is the (transverse or longitudinal) displacement of a vibrating medium
(such as a string, a pool, or a column of gas), and v is the speed at which waves travel
through the medium. This is also solved by separation of variables. If the ends x = 0
and x = L are fixed, the general solution is

y(x, t) =
∞∑
n=1

sin
(nπx
L

)(
An cos

(
nπvt

L

)
+Bn sin

(
nπvt

L

))
.

– We solved this by splitting the general problem into two simpler ones: one where
the initial position of the string was zero, and one where the initial velocity was
zero. These are each another linear, homogeneous boundary condition, so can be
used for separation of variables.

– The above solution describes y(x, t) as a superposition of standing waves. Each
standing wave has wavelength 2L/n, for some n, and frequency (in cycles per
second) nv/(2L). The wave speed v is the product of the wavelength and the
frequency. Note that all the frequencies are integer multiples of the lowest one,
the fundamental frequency v/(2L).

– The d’Alembert solution: any piecewise twice differentiable function of the
form

y(x, t) = F (x+ vt) +G(x− vt)
is a solution to the wave equation. This describes y as a superposition of travelling
waves, one moving to the left with speed v and one moving to the right with speed
v. If the ends of the string are fixed, the solutions are as above with both F and
G odd and 2L-periodic. In particular, if the ends of the string are fixed, the initial
velocity is zero, and the initial displacement is f(x), then writing Fodd(x) for the
odd 2L-periodic extension of f , we have

y(x, t) =
1

2
(Fodd(x+ vt) + Fodd(x− vt)).
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• Laplace’s equation.
∆u = 0

or
uxx + uyy = 0

or
r2urr + rur + uθθ = 0

(in polar coordinates). Among other things, solutions to this give steady-state heat
distributions, i. e., heat distributions which aren’t changing over time.

– We solved this on the rectangle and the disk, and on your homework you solved
it on the washer and on various infinite strips. In all cases, we use separation of
variables.

– In the case of the disk, there were a few new wrinkles. First, all functions u(r, θ)
of polar coordinates (r, θ) satisfy the periodicity condition

u(r, θ) = u(r, θ + 2π).

This can be used like a linear, homogeneous boundary condition.

– Second, some of the building block solutions uncovered by separation of variables
go off to infinity at the center of the disk. These solutions can’t describe heat
distributions, so we throw them out when solving the steady-state heat equation.

– Third, at one point in the solution we had to solve the Euler equation

r2R′′ + rR′ − n2R = 0.

We solved this by looking for solutions of the form R = rk. (If n = 0, R = ln(r)
was also a solution.) This technique more generally works for any ODE of the
form

ar2R′′ + brR′ + cR = 0.

6 Chapter 10: Sturm-Liouville theory and more eigen-

value problems

• A Sturm-Liouville problem is a single-variable boundary value problem of the form

d

dx

(
p(x)

dy

dx

)
− q(x)y + λr(x)y = 0, (a < x < b),

α1y(a)− α2y
′(a) = 0, β1y(b) + β2y

′(b) = 0,

where α1 and α2 are not both 0, and β1 and β2 are not both 0. The values of λ for
which the problem has nontrivial solutions are called eigenvalues, and those solutions
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are called eigenfunctions. The problem is regular if p, p′, q, and r are continuous
on [a, b], and p > 0, r > 0 on [a, b]. It is nonnegative if additionally, q ≥ 0 on [a, b],
and α1, α2, β1, β2 ≥ 0.

• Eigenvalue theorem: the eigenvalues of a regular S-L problem are real numbers λn
with

λ1 < λ2 < · · · < λn < · · · , lim
n→∞

λn = +∞.

Each eigenvalue has a single associated eigenfunction, up to scalar multiples. If the
problem is nonnegative, so are all the eigenvalues. (If 0 is an eigenvalue, we usually
call it λ0.)

• Orthogonality theorem: If yn and ym are eigenfunctions for the same S-L problem,
with n 6= m, then ∫ b

a

yn(x)ym(x)r(x) dx = 0.

• Convergence theorem: We define the eigenfunction series of a function f(x) on [a, b]
as

f(x) ∼
∑

cnyn(x), where cn =

∫ b
a
f(x)yn(x)r(x) dx∫ b
a
yn(x)2r(x) dx

.

If f is piecewise smooth, then this series converges to f(x) at each point x where f is
continuous, and to 1

2
(f(x+) + f(x−)) at each point where f is discontinuous.

• Most importantly: you should know how to use these theorems! They let you find
general solutions to more complicated versions of the previous PDEs, such as. . .

• Application: the one-dimensional heat equation with heat transfer.

ut = Kuxx, (0 < x < L),

u(0, t) = 0, hu(L, t) + ux(L, t) = 0.

The general solution is now not given by a Fourier series, but by an eigenfunction series
for a Sturm-Liouville problem.

u(x, t) =
∞∑
n=1

cn sin

(
βn
L
x

)
exp

(
β2
n

L2
t

)
,

where βn is the nth positive solution to tan(x) = −x/hL. Of course, there are many
other variants of this that you should be able to handle.

• Application: vibrating beams. A frictionless vibrating beam satisfies a fourth-
order PDE

ytt + a4yxxxx = 0,

12



where a is a real constant. If an end is simply supported or hinged, then y = yxx = 0
there; if it’s clamped, then y = yx = 0 there; and if it’s free, then yxx = yxxx = 0 there.
This can be solved using separation of variables, together with the assumption that
the solutions do in fact oscillate with respect to time.

• Alternatively, we can look for steady periodic solutions of the form y = X(x) cos(ωt−
δ). For example, a beam with simply supported ends and initial position 0 has dis-
placement function given by

y(x, t) =
∞∑
n=1

cn sin
(nπ
L
x
)

sin

(
n2π2a2

L2
t

)
.

In this case, the frequencies of vibration are square multiples of the fundamental fre-
quency.

• Application: underground temperature oscillations. (Assuming we talk about
it on Tuesday.) The earth satisfies the one-dimensional heat equation

ut = Kuxx, x > 0,

where x is the depth below the earth’s surface. We can assume that the surface
temperature u(0, t) oscillates like T0 + A0 cos(ωt). This has a steady periodic solution
of the form

u = T0 + A0 exp

(
−
√

ω

2K
x

)
cos

(
t−
√

ω

2K
x

)
,

meaning that the seasonal temperature oscillation both decays and phase-shifts as the
depth increases.
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