
Math 303, Homework 10 solutions

November 30, 2019

1. Here are some problems consisting of partial differential equations with various bound-
ary conditions. For each such problem, say whether or not each of these problems has
the following property (P), and briefly explain why.

(P) If u1 and u2 are solutions to the problem, then so is C1u1 +C2u2, for any constants
C1 and C2.

Note: as we’ve talked about in class, property (P) follows from the problem (the
differential equation, and all the boundary conditions) being linear and homogeneous!
So if you can recognize this condition easily, it’s fine to just say “this problem is linear
and homogeneous”. The point of the problem is that, in practice, it’s often easier to
check (P) than it is to prove a problem is linear and homogeneous.

(a) u(x, y, z) is a function on the cube {(x, y, z) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1},
such that

uxx + uyy + uzz = 0,

uz(x, y, 0)− 3u(x, y, 0) = 0,

ux(0, y, z) = ux(1, y, z) = 0,

uy(x, 0, z) = uy(x, 1, z) = 0.

Suppose that u = C1u1 + C2u2, where u1 and u2 are solutions to the problem.
Then

uxx + uyy + uzz = C1(u1)xx + C2(u2)xx + C1(u1)yy + C2(u2)yy + C1(u1)zz + C2(u2)zz

= C1((u1)xx + (u1)yy + (u1)zz) + C2((u2)xx + (u2)yy + (u2)zz)

= 0 + 0 = 0,

where for the last line we’ve used the fact that u1 and u2 solve the PDE. Next,

uz(x, y, 0)− 3u(x, y, 0) = C1(u1)z(x, y, 0) + C2(u2)z(x, y, 0)− 3C1u1(x, y, 0)− 3C2u2(x, y, 0)

= C1((u1)z(x, y, 0)− 3u1(x, y, 0)) + C2((u2)z(x, y, 0)− 3u2(x, y, 0))

= 0 + 0 = 0,
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using the fact that u1 and u2 both satisfy this boundary condition. Next,

ux(0, y, z) = C1(u1)x(0, y, z) + C2(u2)x(0, y, z) = C1 · 0 + C2 · 0 = 0.

The other three conditions are very similar to this one. So this problem satisfies
(P).

(b) u(r, θ) is a function on the unit disk {(r, θ) : r ≤ 1}, such that r2urr+rur+uθθ = 0,
and such that u is zero on the bottom semicircle of the boundary, {(r, θ) : r =
1, π ≤ θ < 2π}.
As before, let u = C1u1 + C2u2, where u1 and u2 are solutions. Then

r2urr + rur + uθθ = r2(C1(u1)rr + C2(u2)rr) + r(C1(u1)r + C2(u2)r) + C1(u1)θθ + C2(u2)θθ

= C1(r
2(u1)rr + r(u1)r + (u1)θθ) + C2(r

2(u2)rr + r(u2)r + (u2)θθ)

= 0 + 0 = 0.

This uses the fact that u1 and u2 satisfy the PDE. (By the way, notice that this
PDE is linear and homogeneous, even though it has nonconstant functions of r
and θ, like r2, appearing in it – what matters is that u and the derivatives of u
only appear linearly.)

The boundary condition can be rewritten as u(1, θ) = 0 for π ≤ θ < 2π. Suppose
that this is true for u1 and u2. Then, for π ≤ θ < 2π,

u(1, θ) = C1u1(1, θ) + C2u2(1, θ) = 0 + 0 = 0.

(When we talked about the steady-state heat equation on the disk in class, we
noticed that functions that take polar coordinates as input automatically satisfy a
periodicity condition that’s useful for solving PDEs, u(r, θ + 2π) = u(r, θ). Can
you see why this condition also satisfies property (P)?)

(c) u(x, y) is a function on the rectangle {(x, y) : 0 ≤ x ≤ a, 0 ≤ y ≤ b}, such that
uxx + uyy = 0, and u(x, 0) = 0, u(x, b) = 1.

In this case, the differential equation and the first boundary condition satisfy (P),
but the second does not. Indeed, suppose that u1 and u2 are solutions to the
problem, and let u = C1u1 + C2u2. Then for 0 ≤ x ≤ a,

u(x, b) = C1u1(x, b) + C2u2(x, b) = C1 + C2,

which might not be 1. (It’s interesting to note that some linear combinations still
do work – if u1 and u2 are solutions, then any function of the form C1u1 + (1 −
C1)u1 is still a solution. Sometimes, observations like these can be used to handle
nonhomogeneous boundary conditions.)

2. Waves in air inside a pipe work similarly to waves on a string. Let y(x, t) be the
longitudinal displacement of each “layer” of air from its equilibrium position. Then y
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satisfies the wave equation. If an end of the pipe is closed, then the air can’t move at
that end, so y = 0 at that end. If an end of the pipe is open, then the pressure at that
end must be equal to atmospheric pressure, and this turns out to mean that yx = 0 at
that end.

(a) We can model a simple flute of length L (with no finger-holes) as a pipe with
one open end and one closed end. The air is initially non-displaced, and then the
flutist blows across the mouth-hole, giving it some initial velocity. In other words,
the function y(x, t) is a solution to the problem

ytt = v2yxx,

y(0, t) = yx(L, t) = 0,

y(x, 0) = 0.

Using the method of separation of variables, find a general formula for y(x, t).

Suppose that y(x, t) = X(x)T (t). Then the differential equation is

XT ′′ = v2X ′′T

T ′′

v2T
=
X ′′

X
= −λ

where for the second line we note that T ′′/(v2T ) is independent of x, X ′′/X is
independent of t, so they must both be equal to the same constant. The boundary
conditions imply

X(0)T (t) = X ′(L)T (t) = 0,

so since T (t) = 0 gives the trivial solution, we must have X(0) = X ′(L) = 0. So
we are considering the one-variable boundary value problem

X ′′ + λX = 0, X(0) = X ′(L) = 0.

This is exactly the boundary value problem that arose from separation of variables
in problem 2(a) of homework 9. So we have

λn =
n2π2

4L2
, Xn = sin

(nπx
2L

)
, n odd ≥ 1.

The initial condition y(x, 0) = 0 implies

X(x)T (0) = 0,

so T (0) = 0 because X(x) = 0 would give the trivial solution. Thus, T solves the
one-variable problem

T ′′ + v2λT = 0, T (0) = 0.

3



Solutions to this take the form

T = C sin
(
v
√
λt
)
,

so taking λ = λn as above (and C = 1) we get

Tn = sin

(
vnπt

2L

)
, n odd ≥ 1.

The solutions we have obtained with separation of variables are thus

un = TnXn = sin
(nπx

2L

)
sin

(
vnπt

2L

)
, n odd ≥ 1.

The general solution is

u(x, t) =
∑

n odd≥1

Cn sin
(nπx

2L

)
sin

(
vnπt

2L

)
. (1)

(Can you use your work in homework 9 to convince yourself that this is in fact a
general solution, in the sense that, no matter what initial velocity distribution we
specify, we can find a solution u of the form (1) with that initial velocity?)

(b) The flute is built so that its fundamental frequency – the lowest frequency appearing
in the above series, which will typically also be the loudest – is 432 Hz. This is
done to provide the flute with cosmic healing powers. A hole is then drilled at
x = L/3, so that solutions also have to satisfy yx(L/3, t) = 0. What is the new
fundamental frequency? Explain your reasoning.

The formula (1) writes the general solution as a linear combination of standing
waves. Here’s a picture of these standing waves, at their maximum amplitude, for
n = 1, 3, 5, and 7 (and with L = 3).
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Of the waves shown, the only one which satisfies yx(L/3, t) = 0 is the n = 3 wave
(in orange). You should be able to see that the wave sin

(
nπx
2L

)
has derivative zero

at x = L/3 just when n is divisible by 3. So the general solution for this new flute
is

u(x, t) =
∑

n odd≥1

C3n sin

(
3nπx

2L

)
sin

(
3vnπt

2L

)
. (2)

The lowest angular frequency of the holeless flute is the coefficient of t in the
n = 1 term, which is vπ/2L. This measures the speed of oscillations in radians
per second, while Hertz are cycles per second, so the fundamental frequency is

432 Hz =
vπ/2L

2π
=

v

4L
.

Likewise, the fundamental frequency of the new flute is

3v

4L
.

This is three times the old fundamental frequency, so the answer is 1296 Hz.

(If you thought this was easy: what happens if you drill the hole at x = 2L/3
instead? And if you think that’s easy: what about if you drill the hole at x =
L/
√

3?)

3. Here’s the graph of the position of a string with fixed ends at t = 0:

Sketch graphs of the position of the string at t = 1, t = 2, and t = 3. The length of the
string is 4, the wave speed is 1, and the initial velocity is zero at each point.

One way to do this is to use Fourier series to get an explicit solution to the wave
equation, y(x, t), with the given initial conditions, and then plug in x and t. However,
it’s much easier to use the d’Alembert solution. Since the initial velocity is 0, this is

y(x, t) =
1

2
(Fodd(x+ vt) + Fodd(x− vt)) =

1

2
(Fodd(x+ t) + Fodd(x− t)),

where Fodd(x) is the odd, 2L-periodic (i.e. 8-periodic) extension of the initial position
function f(x). Here is Fodd:
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The maximum x-value of this function we really care about is L + 3v = 7, and the
minimum is 0− 3v = −3.

Now, at t = 1, I’ve drawn 1
2
Fodd(x+ 1) dotted in red, 1

2
Fodd(x− 1) dotted in blue, and

their sum in black:

Here is t = 2:

Here is t = 3:
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You can access an animated graph of this as https://www.desmos.com/calculator/
f1iyv64dzf. What do you observe about the motion of the string? What happens
when t = 4, so both of the travelling waves have moved by half their wavelength, that
is, by a full length of the string? What, mathematically speaking, is keeping the ends
of the string fixed?
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