
Math 303, Homework 11 solutions

Suppose you have a metal washer of the form {(r, θ) : 1 ≤ r ≤ 2}. The inside circle
is heated to a fixed temperature distribution f(θ), and the outside circle is heated to a fixed
temperature distribution g(θ).

(a) Find the general formula for the steady-state temperature function u(r, θ) on the washer.

The temperature distribution u satisfies the steady-state heat equation,

r2urr + rur + uθθ = 0 (a ≤ r ≤ b). (1)

For the moment, we’ll ignore the nonhomogeneous conditions on the boundary, but we
will remember the periodicity condition

u(r, θ + 2π) = u(r, θ). (2)

We solve the problem (1), (2) by separating variables. Initially, this goes identically
with our solution of the steady-state heat equation on a disk in class. Let u(r, θ) =
R(r)Θ(θ). Then the periodicity condition (2) tells us that Θ is 2π-periodic,

Θ(θ + 2π) = Θ(θ).

The differential equation (1) becomes

r2R′′Θ + rR′Θ +RΘ′′ = 0.

We can change this into

−Θ′′

Θ
=
r2R′′ + rR′

R
= λ,

where we observe that, since each side is independent of one of the two variables, they
must both be equal to the same constant. The one-variable problem for Θ is then

Θ′′(θ) + λΘ(θ) = 0, Θ(θ + 2π) = Θ(θ).

λ < 0: The general solution to the ODE is

Θ(θ) = C1e
√
−λθ + C2e

√
λθ.
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But no such function (besides the zero function) is 2π-periodic.

λ = 0: The general solution is

Θ(θ) = C1 + C2θ.

This is periodic iff C2 = 0, in which case it’s a constant function. Let’s write λ0 = 0
and Θ0(θ) = 1.

λ > 0: The general solution is

Θ(θ) = C1 cos(
√
λθ) + C2 sin(

√
λθ).

This has period 2π/
√
λ. Moreover, any integer multiple of 2π/

√
λ is also a period of

this function. Since we want 2π to be a period,
√
λ must be an integer. So we get

eigenvalues
λn = n2, n = 1, 2, 3, . . . ,

and associated eigenfunctions

Θn = C1 cos(nθ) + C2 sin(nθ).

Notice that there’s now a two-dimensional vector space of eigenfunctions for each eigen-
value. We could give names to a basis – for example.

ΘA
n = cos(nθ), ΘB

n = sin(nθ).

Or we could just remember that the whole vector space needs to be taken into account.

We now return to the equation for R, which simplifies to

r2R′′ + rR′ − λR = 0.

This is a bit tricky, but fortunately, we solved it in class, and you’re welcome to just
refer to the results we established there. For the sake of reference, I’ll go over how to
do it again. There are cases.

λ = n2 > 0: So the equation is

r2R′′ + rR′ − n2R = 0.

We look for solutions of the form R = ra. Such a solution satisfies

r2 · a(a− 1)ra−2 + r · ara−1 − n2ra = 0,

and since r > 0, we can divide by ra to get

a(a− 1) + a− n2 = a2 − n2 = 0.
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So a = ±n, meaning that rn and r−n are solutions. Since the ODE is linear and
homogeneous, anything of the form

Rn = C1r
n + C2r

−n

is a solution, and since it’s second-order, these must be all the solutions. (In class, we
discarded the solution r−n, because it was not continuous at 0, but we can’t do that
here, as 0 is no longer part of the domain!)

λ = 0: The equation is
r2R′′0 + rR′0 = 0.

The same argument as above works, but it just gives us one solution, R0 = r0 = 1.
We could use this to find a second linearly independent solution by the method of
reduction of order. Alternatively, we can reduce the equation to first-order by writing
S(r) = R′0(r), so we have

r2S ′ + rS = 0

or
dS

dr
= −1

r
S.

We can move things around and integrate this:∫
1

S
dS = −

∫
1

r
dr

ln(S) = − ln(r) + C = ln(1/r) + C

S =
C1

r

R0 =

∫
S dr = C1 ln(r) + C2.

So the second linearly independent solution in this case is R(r) = ln(r). Again, this
wouldn’t work as a solution on the disk, because it’s discontinuous at 0, but it does
work as a solution on the washer.

Putting it all together: For each λn, we have a two-dimensional space of possible Θn

and a two-dimensional space of possible Rn. Any product of the form RnΘn is a
solution to the problem. For example, when n = 1, we have four linearly independent
solutions,

r cos(θ), r sin(θ), r−1 cos(θ), r−1 sin(θ).

Any linear combination of these is also a solution – anything of the form

A1r cos(θ) +B1r sin(θ) + C1r
−1 cos(θ) +D1r

−1 sin(θ).
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Taking the sum over all n, we get a general solution

A0 +B0 ln(r) +
∞∑
n=1

(
Anr

n cos(nθ) +Bnr
n sin(nθ) + Cnr

−n cos(nθ) +Dnr
−n sin(nθ)

)
.

(3)
Another way of writing this is

A0 +B0 ln(r) +
∞∑
n=1

[(
Enr

n + Fnr
−n) (Gn cos(nθ) +Hn sin(nθ))

]
.

In either case, there are four independent pieces of information that have to be specified
for each n. This reduces to the previous line by defining An = EnGn, Bn = FnGn, and
so on.

It doesn’t matter what letters you use or how you arrange your solution, but your
solution is wrong if you use the same notation for coefficients that should be different.
For instance,

A+B ln(r) +
∞∑
n=1

(
Crn cos(nθ) +Drn sin(nθ) + Er−n cos(nθ) + Fr−n sin(nθ)

)
is an incorrect solution. This says that the coefficient of r cos(θ) is the same as the
coefficient of r2 cos(2θ), r3 cos(3θ), and so on, which is not right.

(b) Find u when f(θ) = cos(θ) and g(θ) = sin(θ). Notice that f(θ) = r(1, θ) and g(θ) =
r(2, θ). Let’s apply this to (3). We have

f(θ) = r(1, θ) = A0 +
∞∑
n=1

(An cos(nθ) +Bn sin(nθ) + Cn cos(nθ) +Dn sin(nθ)) ,

g(θ) = r(2, θ) = A0 +B0 ln(2) +
∞∑
n=1

(
An2n cos(nθ) +Bn2n sin(nθ)

+ Cn2−n cos(nθ) +Dn2−n sin(nθ)
)
.

No matter what f and g are, they’re 2π-periodic functions and so have Fourier series.
So the right-hand sides of these equations must be their Fourier series – in other words,
An+Cn is the coefficient of cos(nθ) in the Fourier series for f , Bn+Dn is the coefficient
of sin(nθ) in the Fourier series for f , and so on.

In this case, we have

cos(θ) = A0 +
∞∑
n=1

((An + Cn) cos(nθ) + (Bn +Dn) sin(nθ)) ,

sin(θ) = A0 +B0 ln(2) +
∞∑
n=1

(
(2nAn + 2−nCn) cos(nθ) + (2nBn + 2−nDn) sin(nθ)

)
.
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The Fourier series for cos(θ) has a single nonzero term, cos(θ). Comparing coefficients,
we have

A0 = 0,

A1 + C1 = 1, B1 +D1 = 0,

An + Cn = 0, Bn +Dn = 0 (n > 1).

Likewise, comparing coefficients in the second equation of Fourier series gives

A0 +B0 ln(2) = 0,

2A1 +
1

2
C1 = 0, 2B1 +

1

2
D1 = 1,

2nAn + 2−nCn = 0, 2nBn + 2−nDn = 0 (n > 1).

We see that A0 = B0 = 0, and that An = Bn = Cn = Dn = 0 for each n > 1. The
systems of equations for n = 1 are easily solved to show

A1 = −1/3, B1 = 2/3, C1 = 4/3, D1 = −2/3.

So the solution is

u(r, θ) = −1

3
r cos(θ) +

2

3
r sin(θ) +

4

3
r−1 cos(θ)− 2

3
r sin(θ). (4)

(c) Find u when f(θ) = 1 and g(θ) = 2. In this case, we have

1 = A0 +
∞∑
n=1

((An + Cn) cos(nθ) + (Bn +Dn) sin(nθ)) ,

2 = A0 +B0 ln(2) +
∞∑
n=1

(
(2nAn + 2−nCn) cos(nθ) + (2nBn + 2−nDn) sin(nθ)

)
.

Comparing coefficients, we get

A0 = 1, A0 +B0 ln(2) = 2,

An + Cn = 0, 2nAn + 2−nCn = 0 (n > 0),

Bn +Dn = 0, 2nBn + 2−nDn = 0 (n > 0).

This implies that A0 = 1, B0 = 1/ ln(2), and An = Bn = Cn = Dn = 0 for all other n.
So the solution is

u(r, θ) = 1 +
ln(r)

ln(2)
= 1 + log2(r). (5)

Notice that this is independent of θ, which makes sense, because f and g are indepen-
dent of θ, so the whole situation is symmetric under rotation.

It’s interesting to me that this is a way of “physically” (though imprecisely and im-
practically) producing a logarithm function – you could literally heat a large washer
in this way and measure the temperature at various values of r, to calculate the values
of log(r).
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