Math 303, Homework 3

Due September 12, 2019

Remember to explain your reasoning and show your work! For problems 1 and 2:
(a) Produce a graph of the phase plane, and some representative solutions (you can do this in pplane and print it, or sketch it by hand);
(b) Say what you can about the eigenvalues of the matrix, from looking at the graph;
(c) Describe the critical behavior at 0: is it a node, a center or a spiral point? a sink or a source? if a node, is it proper or improper?
1.

$$
\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
2 & 5 \\
-1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

2.

$$
\begin{aligned}
x^{\prime} & =1.4 x+2.4 y, \\
y^{\prime} & =-1.8 x-2.6 y .
\end{aligned}
$$

3. A complicated mechanical system has four moving parts. By analyzing the system, you've determined that the positions of the parts are related by the differential equations:

$$
\begin{aligned}
x_{1}^{\prime} & =2.03 x_{1}+3.34 x_{2}-0.28 x_{3}-0.41 x_{4}, \\
x_{2}^{\prime} & =0.49 x_{1}+1.33 x_{2}+0.14 x_{3}+0.21 x_{4}, \\
x_{3}^{\prime} & =7.13 x_{1}-9.23 x_{2}+5.32 x_{3}+2.49 x_{4}, \\
x_{4}^{\prime} & =-2.92 x_{1}+1.09 x_{2}-1.12 x_{3}+1.32 x_{4} .
\end{aligned}
$$

What will happen to the parts when you put the system in motion? (You probably want to use a computer for this. If you're not sure how, you should take a look at "Application 5.2" on page 295 of the book.)

