Math 303, Homework 4 solutions

1. The point of this problem is to get you to think more about how to use eigen-
vectors and eigenvalues in higher dimensions. Consider the system

d [ -1 2 0 T
z — 2 z

(a) Find the general solution to the system.
I used WolframAlpha to find the eigenvalues and eigenvectors:

)\1 = 27 vV = (0707 1)T7
Ny =1, vy = (1 +14,4,1)7,
A3 = —i, vy = (1 —4,—i,1)T.

The first pair gives the solution

X1 =

_ o O
®
®

The second pair gives the complex-valued solution

L+a\ 1+
y = i et = i (cost + isint)
1 1

cost —sint +21cost +2sint
= —sint +7cost
cost +isint

As the coefficient matrix is real-valued, the real and imaginary parts of y
are also solutions:

cost —sint cost +sint
X9 = —sint , X3 = cost
cost sint



Thus, the general real-valued solution is

0 cost —sint cost +sint
x=C, 0] e*+C, —sint + (4 cost
1 cost sint

Some of the solutions travel in closed orbits in a single plane through the
origin. What is the plane?

We first need to figure out which solutions travel in closed orbits. Graphs
can help here, as can thinking about what the various terms in the general
solution are doing. The first term gives exponential growth in the z direc-
tion. The other two terms are made up of cosines and sines, and so both
oscillate with period 27. Thus, any solution with C'; = 0 will oscillate with
period 27. These are the solutions we expect to stay in a plane.

As an example, let Cy = 1 and C3 = 0. Then the solution has the form

T cost —sint
y | = —sint
z cost

This is an ellipse around the origin. Putting ¢ = 0, we see that the plane
should contain (1,0,1). Putting t = 7/2, we see that it also contains
(=1,—1,0). As the plane goes through the origin, it must contain the
vectors from the origin to these two points.

Thus, | the plane is spanned by the vectors (1,0,1)7 and (-1, —1,0)7.

We can find an equation for it as follows: the cross product of the spanning
vectors is

i j k 1
1 0 1]=[-1
1 -1 0 —1

This is a normal vector to the plane. So the equation of the plane is

r—y—z=0.

It’s not too hard to check that all solutions with C; = 0 lie in this plane:
given such a solution, at time t it goes through the point

(Cy(cost —sint) 4+ Cs(cost +sint), —Cysint 4+ Cy cost, Cy cost + Cysint).

One can plug these values into the equation z — y — z = 0 to see that the
point always satisfies this equation, no matter what ¢ or the constants are.
The point of this is that, even in higher dimensions, a pair of conjugate
imaginary eigenvalues will give solutions that orbit elliptically in some



plane. Likewise, a pair of conjugate complex eigenvalues with nonzero real
part will give spiral solutions in some plane. (Things get more complicated
if the eigenvalues are also repeated, but I'll leave this as a thing for you to
think about).

Some of the solutions travel along a line through the origin. What is the
line?

This is much easier. We know that any real eigenvalue A\ gives rise to
solutions veM that travel along a line parallel to v. In this case, the only

real eigenvalue we have is 2, and the corresponding eigenvector is (0,0, 1).
Thus, there are solutions that travel along the |z axis], also known as the

line , or the line

0]:zeR

What do the answers to (b) and (c) have to do with the eigenvectors of the
coefficient matrix?

In (c), solutions travel linearly along the line parallel to the eigenvectors
with real eigenvalue.

Analogously, we should maybe think that the other eigenvectors “point
in the direction” of the plane containing the elliptical orbits. This is an
imprecise statement, since these eigenvectors are not real. However, the
real part of the nonreal eigenvector v is (1,0, 1), and its imaginary part is
+(1,1,0)T — and these vectors span the plane! In fact, one could consider
the eigenvectors vy and v themselves to be in a complexified version of the
plane, in the sense that their coordinates satisfy the relation z —y — 2z = 0.

So: areal eigenvalue gives rise to solutions that grow or decay exponentially
on a line, and that line is parallel to the associated eigenvectors. A pair of
complex conjugate eigenvalues gives rise to solutions that orbit or spiral
on a plane, and that plane is spanned by the real and imaginary parts of
the eigenvectors to either eigenvalue.

How would you describe a typical solution to the system (i.e., not one of
the ones mentioned in (b) and (c))?

If neither C'y, nor both C5 and C}, is zero, then the solution will neither stay
on a line nor orbit in a plane. Rather, it will have some characteristics of
both. It will form a sort of corkscrew shape, orbiting parallel to the plane
x —y — 2z = 0 with period 27 while simultaneously moving exponentially
in the 2z direction. Here’s a picture of one such solution with parameters
C7 = 0.0002, Cy =1, C3 = 0. T've also graphed the plane x —y — 2z = 0,
which the solution stays close to for small values of t.






2. Consider the system

(a)

2/ = siny),
y/ — $2.
Find the critical points of the system and the Jacobian at each critical
point.
The critical points are the points with 2’ = ¢ = 0. If ¢y = 0, then
22 = 0,80 x = 0. If 2/ = 0, then sin(y) = 0, so y = kn where k is an

integer (...,—2,—1,0,1,2,...). So ‘there is a critical point at (0, k) ‘ for

any integer k.
The Jacobian of the system is

At the critical point (0, k7), we have
([0 1
k even
—1
0 k odd.
\ 0 O

Pick your favorite critical point and solve the linearization of the system
at that point. How would you describe the behavior of solutions to the
linearization?

J(0, kr) =

At the critical point (0,0), the linearization of the system is

)= 6)

(This is just the linear system whose coefficient matrix is the Jacobian at
that critical point.)

This system has a repeated eigenvalue of 0. One eigenvector with this
eigenvalue is (1,0)7. There is only a one-dimensional space of eigenvectors,
so the eigenvalue is defective. Associated to this eigenvector is the solution

() ()

We then look for a generalized eigenvector w with

(A—0l)w = (é) .

5



One such vector is (0,1)7. Thus, there is a second solution

- (o= ()

The general solution is then

x = C ((1)) +C <® ' (cl)) t)'

Any solution with Cy = 0 is constant at some point on the z-axis. Thus,
any point on the z-axis is a critical point of this linear system (though not
of the nonlinear system in (a)!). At points not on the z-axis (with Cy # 0),
solutions travel linearly in the positive or negative x-direction. Here’s a
picture from pplane.
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(¢) This system is not almost linear: although the functions involved are con-
tinuously differentiable, and although the system itself has isolated critical
points, the linearizations do not have isolated critical points. Thus, the
linearization is not a good approximation to the critical behavior of the
system. How do solutions to the nonlinear system actually behave near the
critical points?

To explain what I wrote in the problem: even though they’re infinitely
many critical points, they’re isolated because each one is a nonzero distance
from all the others. That is, if you zoom in close to one of the critical points,
you won't see any others. However, as we saw above, the linearization



at (0,0) has critical points at every point along the z-axis. Thus, the
linearization does not have isolated critical points. This happens any time
0 is an eigenvalue of the Jacobian, and, in particular, happens at all the
other critical points of our system.

Since we can’t use the techniques we learned in class to answer this ques-
tion, our only resort is to graph it.
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This picture shows the critical points at (0,0), (0,7), and (0, —7). As you
can see, solutions that approach these critical points bend around them
and travel in the opposite direction. Some solutions just slalom back and
forth between critical points forever. This isn’t a sort of behavior we’ve
studied much, and these critical points aren’t nodes, spiral points, or any
of the other named ones we’ve seen.

3. Consider the system
2’ = sin(y),
y =+ 22

(a) Find the critical points of the system and the Jacobian at each critical
point.

The quadratic o+ 22 is zero just when # = 1 or —1. By the same reasoning

as in 2(a), the critical points are at | (0, k7) and (—1, k7), | for every integer
k.




(b)

Pick two critical points with different x-values and find the eigenvalues
of the Jacobian at those points. What kind of critical behavior does the
linearization have at each point?

The Jacobian at an arbitrary point is

o=, )

7(0,0) = <(1) (1)> ,

which has eigenvalues 1. The linearization at this point is a saddle point.
At (—1,0), the Jacobian is

J(=1,0) = (_01 (1)) ,

which has eigenvalues +i. The linearization here is a center.

At (0,0), this is

Note that 0 is not an eigenvalue of either of these matrices. The same is
true at all the other critical points.

Is this nonlinear system almost linear? How do its solutions behave near
the critical points?

The system is almost linear because:

(1) the functions sin(y) and x + z* are continuously differentiable;
(2) the system has isolated critical points;

(3) the Jacobian does not have 0 as an eigenvalue at any critical point
(equivalently, the linearization at any critical point has isolated critical
points).

From part (b), we can see that the origin of the nonlinear system is a saddle
point, and that the critical point (—1,0) is a center or possibly a spiral
point (this is one of the edge cases we talked about). It’s not too hard
to do the same reasoning at all the critical points, and see that (0,2kn)
and (—1, (2k + 1)7) are always saddle points, and that (0, (2k + 1)7) and
(—1,2km) are centers/spiral points. To see this in action, and confirm that
the questionable points are in fact centers, we turn to pplane.
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