Math 303, Homework 7

Due October 17, 2019

1. Parseval's identity states that, if f is a piecewise smooth and $2 L$-periodic function with Fourier series

$$
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi t}{L}\right)+b_{n} \sin \left(\frac{n \pi t}{L}\right)
$$

then

$$
\frac{1}{L} \int_{-L}^{L} f(t)^{2} d t=\frac{a_{0}^{2}}{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right) .
$$

Without worrying too much about convergence issues - that is, you can rearrange terms in infinite series, integrate them term by term, and so on, as much as you'd like - give a justification for this statement. (Intuitively, this says that if f doesn't attain very large values, then its Fourier coefficients aren't very large, and vice versa.)
2. Write down the Fourier series for the 2π-periodic function equal to t / π on the interval $(-\pi, \pi)$. Using Parseval's identity, prove that

$$
\frac{\pi^{2}}{6}=\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots
$$

3. The Fourier series

$$
f(t)=\sum_{n=1}^{\infty} \frac{\cos \left(3^{n} t\right)}{2^{n}}
$$

converges to a continuous function. Using the theorem about differentiating Fourier series that we learned in class, show that f does not have a piecewise smooth first derivative.

Remarks for those who like pure math. The series

$$
\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\cdots, \quad \text { for } s>1
$$

is usually called $\zeta(s)$. In problem 2 , you calculated $\zeta(2)$. You can calculate $\zeta(4), \zeta(6)$, and so on by applying the same method to periodic extensions of other polynomial functions (try it out!). In fact, $\zeta(2 k)$, for integer k, is always a rational multiple of $\pi^{2 k}$. On the other hand, the series $\zeta(2 k+1)$ are very poorly understood. While the calculation of $\zeta(2)$ was known to Euler in the 18th century, the fact that $\zeta(3)$ is irrational was only proved in the 1970s!

The series

$$
\sum_{n=1}^{\infty} a^{n} \cos \left(b^{n} t\right)
$$

where $0<a<1$ and b is sufficiently large, is known as the Weierstrass monster. If b is an integer, this is actually a Fourier series. Weierstrass proved a much stronger statement than problem 3: that if $a b \geq 1+\frac{3 \pi}{2}$, then the sum of the series is continuous at every point and differentiable at no point. This shocking result challenged the mathematical world's intuitions about how continuous functions worked and forced it to revisit the very foundations of analysis.

