
Math 303, Homework 7 solutions

1. Parseval’s identity states that, if f is a piecewise smooth and 2L-periodic
function with Fourier series
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Without worrying too much about convergence issues – that is, you can rearrange
terms in infinite series, integrate them term by term, and so on, as much as
you’d like – give a justification for this statement.

Since f is piecewise smooth, the Fourier series converges to it on the interval
[−L,L], except at its finitely many discontinuities. So the integral of f(t)2 is
the same as the integral of the square of the Fourier series. This square is
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Let’s integrate these terms one at a time.

The constant term:
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The cosine terms:
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This is zero because sin(−nπ) = sin(nπ) = 0.

The sine terms:
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This is zero because cos(−nπ) = cos(nπ) (it’s either 1 or −1, but they’re the
same).

The products of sines and cosines: There’s one of these with an anbm in
front and one with a bnam. But in either case, all we need to check is∫ L

−L
cos(nπt/L) sin(mπt/L) dt = 0,

for any choice of n and m. The simplest way to do this is to notice that the
cosine function is even and the sine function is odd, so their product is odd,
so its integral along the symmetric interval [−L,L] is zero. Another way is to
recall that we showed this in class (it’s also in the book) at the beginning of our
study of Fourier series. We really just proved that∫ π

−π
cos(nt) sin(mt) dt = 0,

but by changing variables, say u = πt/L, one can reduce the first integral to
the second. Finally, you can actually calculate either integral by starting with
the trig identity
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The products of cosines and cosines, and sines and sines: Now we need
to use the formula∫ L

−L
cos(nπt/L) cos(mπt/L) dt =

{
L n = m

0 n 6= m.

Again, there are a number of ways to get this formula. You can quote it from the
book; use the formula with L = π we checked in class, and do a u-substitution
with u = πt/L; or prove it directly from the appropriate trig identity. Here the
necessary identity is
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If m = n, then the second term becomes just 1, which behaves differently than
an ordinary cosine function when integrated. This explains the two cases.

Analogous remarks apply to the formula∫ L

−L
sin(nπt/L) sin(mπt/L) dt =

{
L n = m

0 n 6= m.

To sum up, in the enormous series formula for f(t)2 above, the only terms which
have a nonzero integral are the constant term and the terms

a2n cos2
(
nπt

L

)
and b2n sin2

(
nπt

L

)
.

Using the integrals we just did, we get that∫ L

−L
f(t)2 dt =

a20
2

+
∞∑
n=1

(a2n + b2n).

If you’re curious, the technical issues that I told you not to care about are: even
if the Fourier series converges to f(t), does its square converge to f(t)2? And
can we integrate the square of the series term by term? These problems can
usually be ignored if the series converges fast enough – a good rule of thumb is
that you can do whatever you want to a series whose terms decrease at least as
fast as 1/n2. But if you want to know more about what can go wrong, sign up
for a real analysis class!

2. Write down the Fourier series for the 2π-periodic function equal to t/π on the
interval (−π, π). Using Parseval’s identity, prove that
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+ · · · .

Let’s write f(t) for the periodic function. This function is odd, so we know
automatically that all the an’s are zero. We then have

bn =
1

π

∫ π

−π

t

π
sin(nt) dt.

Integrating by parts, with u = t
π

and v′ = sin(nt), gives
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The right-hand integral is zero because the integral of a cosine function over an
integer number of periods is always zero.
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So we have

f(t) ∼
∞∑
n=1

−2 cos(nπ)

nπ
sin(nπt) =

∞∑
n=1

−2(−1)n

nπ
sin(nπt).

The function f is piecewise smooth, so we can apply Parseval’s identity. This
says that
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But on the interval (−π, π), f is just equal to t/π. So the left-hand side is
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Multiplying both sides by π2/4 gives

π2

6
=
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1

n2
,

which is what we wanted to prove.

(For a completely different proof of this, look in section 9.2 of the book, which
proves it as an application of the Fourier series convergence theorem!)

3. The Fourier series

f(t) =
∞∑
n=1

cos(3nt)

2n

converges to a continuous function. Using the theorem about differentiating
Fourier series that we learned in class, show that f does not have a piecewise
smooth first derivative.

Suppose that f does have a piecewise smooth first derivative. We’ll try to find
a contradiction.

The differentiation theorem says that, if f is continuous (which I told you
in the problem) and if f ′ is piecewise smooth (which we are assuming), then
the Fourier series for f ′ is given by the termwise derivative of the Fourier series
for f . So

f ′(t) ∼
∞∑
n=1

−3n sin(3nt)

2n
.
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The convergence theorem says that, if f ′ is piecewise smooth, then its Fourier
series converges at every point. More precisely, it converges to f ′(t) if f ′ is
continuous at t, and to 1

2
(f ′(t+)−f ′(t−)) if f ′ is discontinuous at t. (Note that

f ′(t+) and f ′(t−) are both finite, by definition of “piecewise smooth”).

But it’s just not true that the Fourier series we found for f ′ converges at every
point. In fact, it appears to converge at almost no point. You can see evidence
for this if you try graphing a partial sum (even up to like n = 5), or calculating
the value of f ′ on WolframAlpha or Matlab. This isn’t a proof, because it
could be true that the sum converges to a number too big for these programs
to handle, or that, say, the n = 1000 term comes along and wipes everything
out. But it is an acceptable argument in this class.

For a rigorous proof, let’s calculate the Fourier series for f ′ at t = π/2. Since
3n is always odd, sin(3nπ/2) is either 1 or −1. So the absolute value of the nth
term in the series for f ′(π/2) is 3n/2n. This clearly grows with n. But if the
absolute values of the terms in a series don’t go to 0 with increasing n, then the
series diverges. So the series diverges at t = π/2, which is the contradiction we
wanted.

(Since our applications of the two theorems depended on a hypothesis we now
know is false – that f ′ is piecewise smooth – we shouldn’t believe the conclusions
we got from them, either. In particular, it’s just not true to say that f ′ is given
by the Fourier series

f ′(t) ∼
∞∑
n=1

−3n sin(3nt)

2n
.

I would guess – this is Weierstrass’s theorem if we replace the number 3 with a
bigger one – that f ′ just doesn’t exist for most, if not all, values of t, so it doesn’t
make sense to talk about its Fourier series at all. In this case, differentiating
term by term just gives us divergent nonsense.)
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