Math 303, Homework 8

Due October 24, 2019

1. This problem only requires trig, but I've alluded to it often enough in class that you might as well do it. Suppose that you have a linear combination of cosines and sines of the same frequency, of the form

$$
A \cos (\omega t)+B \sin (\omega t)
$$

Show that this can be written as a single, phase-shifted sine function, of the form

$$
R \sin (\omega t+\delta)
$$

(In particular, you have to find R and δ.)
2. Suppose that a spring-mass system with mass 1 kg , damping constant $1 \mathrm{~kg} / \mathrm{s}$, and spring constant $1 \mathrm{~kg} / \mathrm{s}^{2}$ is forced by a sinusoidal force $F(t)=\sin (\omega t)$. Here ω is left as a parameter, so your answers will depend on ω.
(a) Find a formula for the steady-state motion of the mass.
(b) Using the previous problem, find the amplitude and phase shift of the motion. (The phase shift is δ in the previous problem - this is the number of radians by which the mass lags behind the force.)
(c) What value of ω (exactly) gives a steady-state motion of maximum amplitude?
3. Suppose that the system in the previous problem is forced by the π-periodic square wave, defined on the interval $[0, \pi)$ by

$$
F(t)= \begin{cases}1 & 0 \leq t<\pi / 2 \\ -1 & \pi / 2 \leq t<\pi\end{cases}
$$

Find a formula for the steady-state motion of the mass.

