Math 303, Homework 9

Due November 7, 2019

You may be able to find more information about both these problems in the book. Both problems have to do with a heat-conducting rod, insulated along its length, of length L and thermal diffusivity K. Recall that the temperature distribution $u(x, t)$ of such a rod satisfies the heat equation:

$$
\begin{equation*}
u_{t}=K u_{x x} . \tag{1}
\end{equation*}
$$

1. Suppose that one end of the rod is held at temperature 0 and the other end is held at a nonzero fixed temperature H. So the boundary conditions are now

$$
\begin{equation*}
u(0, t)=0, \quad u(L, t)=H . \tag{2}
\end{equation*}
$$

(a) Find a particular solution $u_{p}(x, t)$ to the heat equation that satisfies the boundary conditions (2). (Hint: Don't try to use separation of variables you just want one solution! Instead, see if you can make both sides of (1) equal to zero?)
(b) Let u be an arbitrary solution to the heat equation that satisfies (2), with initial temperature distribution

$$
u(x, 0)=f(x)
$$

Show that

$$
v(x, t)=u(x, t)-u_{p}(x, t)
$$

satisfies the heat equation together with the simpler boundary conditions,

$$
v(0, t)=0, \quad v(L, t)=0,
$$

and the initial condition

$$
v(x, 0)=f(x)-u_{p}(x, 0)
$$

(c) As an example, find $u(x, t)$, subject to (2), if the initial temperature is constant:

$$
u(x, 0)=H \quad(0<x \leq L)
$$

2. Suppose that one end of the rod is held at temperature 0 and the other end is insulated:

$$
\begin{equation*}
u(0, t)=0, \quad u_{x}(L, t)=0 \tag{3}
\end{equation*}
$$

(a) Show that, if $u(x, t)=X(x) \cdot T(t)$, then u is a scalar multiple of a function of the form

$$
u_{n}(x, t)=\sin \left(\frac{n \pi}{2 L} x\right) \exp \left(\left(\frac{-K n^{2} \pi^{2}}{4 L^{2}} t\right)\right.
$$

where n is odd.
(b) It follows that any function

$$
u(x, t)=\sum_{n \geq 1 \text { odd }} b_{n} \sin \left(\frac{n \pi}{2 L} x\right) \exp \left(\left(\frac{-K n^{2} \pi^{2}}{4 L^{2}} t\right)\right.
$$

is a solution to the heat equation satisfying (3). The initial temperature distribution is

$$
\begin{equation*}
u(x, 0)=\sum_{n \geq 1 \text { odd }} b_{n} \sin \left(\frac{n \pi}{2 L} x\right) \tag{4}
\end{equation*}
$$

But this is only useful if we can write any (reasonable, i. e., piecewise smooth) function on $[0, L]$ in the form (4)!
Convince yourself that this is true, as follows. Let $f(x)$ be a function on $[0, L]$. Let $F(x)$ be the odd $4 L$-periodic function such that

$$
F(x)= \begin{cases}f(x) & 0 \leq x \leq L \\ f(2 L-x) & L \leq x \leq 2 L\end{cases}
$$

Show that the Fourier series of $F(x)$ is of the form (4), and converges to $f(x)$ at all points on $[0, L]$ where $f(x)$ is continuous.
(c) Find $u(x, t)$, subject to (3), if the initial temperature distribution is constant:

$$
u(x, 0)=H \quad(0<x \leq L)
$$

