
Math 303, Homework 9

Due November 7, 2019

Recall that the temperature distribution u(x, t) of such a rod satisfies the heat equation:

ut = Kuxx. (1)

1. Suppose that one end of the rod is held at temperature 0 and the other end is held at a
nonzero fixed temperature H. So the boundary conditions are now

u(0, t) = 0, u(L, t) = H. (2)

(a) Find a particular solution up(x, t) to the heat equation that satisfies the boundary
conditions (2). (Hint: Don’t try to use separation of variables – you just want
one solution! Instead, see if you can make both sides of (1) equal to zero?)

I’ll follow the hint. If ut = 0, then u(x, t) is a constant function of t for each value
of x. In other words, it doesn’t depend on t. It’s only a function of x. Next, if
uxx = 0, then integrating once gives ux = a constant C1, and integrating twice
gives u = C1x + C2. The only values of the constants that satisfy the boundary
conditions are C1 = H/L and C2 = 0. Thus,

u(x, t) =
H

L
x.

As I mentioned in class, this is exactly the steady state of the bar, with the given
boundary conditions. Over time, any temperature distribution will approach this
one.

(b) Let u be an arbitrary solution to the heat equation that satisfies (2), with initial
temperature distribution

u(x, 0) = f(x).

Show that
v(x, t) = u(x, t)− up(x, t)

satisfies the heat equation together with the simpler boundary conditions,

v(0, t) = 0, v(L, t) = 0,
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and the initial condition

v(x, 0) = f(x)− up(x, 0).

We check the boundary conditions:

v(0, t) = u(0, t)− up(0, t) = 0− 0 = 0,

v(L, t) = u(L, t)− up(L, t) = H −H = 0.

We check the heat equation:

vt = ut − (up)t = Kuxx −K(up)xx

(since both u and up also satisfy the heat equation). But the right-hand side of
this is just Kvxx. Finally, the initial value of v is

v(x, 0) = u(x, 0)− up(x, 0) = f(x)− up(x, 0),

by definition of f(x).

As you can see, this is really straightforward once you know what you’re doing!
It’s an application of the linearity of the heat equation and the various bound-
ary conditions. Using this linearity, we are able to replace the nonhomogeneous
boundary condition u(L, t) = H with a homogeneous one u(L, t) = 0.

(c) As an example, find u(x, t), subject to (2), if the initial temperature is constant:

u(x, 0) = H (0 < x ≤ L).

Let v(x, t) = u(x, t)− up(x, t). Then by part (b), v is a solution to the following
problem:

vt = Kvxx,

v(0, t) = v(L, t) = 0,

v(x, 0) = u(x, 0)− up(x, 0) = H − H

L
x.

Even though v isn’t really a temperature distribution so much as a difference
between two temperature distributions, this problem is mathematically identical
to the one about a temperature distribution on a laterally insulated rod with ends
held at temperature zero! By work we did in class, we know that v(x, t) has the
general form

v(x, t) =
∑

bn sin
(nπx
L

)
exp

(
−Kn2π2t

L2

)
,

with initial condition
v(x, 0) =

∑
bn sin

(nπx
L

)
.
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Thus, bn are the Fourier coefficients for the odd 2L-periodic extension of the
function H − H

L
x. We have:

bn =
2

L

∫ L

0

(
H − H

L
x

)
sin
(nπx
L

)
dx

(integrate by parts with u = H −Hx/L, v = sin(nπx/L))

=
2

L

[(
H − H

L
x

)(
−L
nπ

)
cos
(nπx
L

)]L
0

− 2

L

∫ L

0

H

L
· L
nπ

cos
(nπx
L

)
dx

=
2H

nπ
− 2H

nπL

[
L

nπ
sin
(nπx
L

)]L
0

=
2H

nπ
.

This can be checked by graphing. Thus, for v, we get

v(x, t) =
∞∑
n=1

2H

nπ
sin
(nπx
L

)
exp

(
−Kn2π2t

L2

)
.

Since u(x, t) = v(x, t) + up(x, t), the formula for u is

u(x, t) =
H

L
x+

∞∑
n=1

2H

nπ
sin
(nπx
L

)
exp

(
−Kn2π2t

L2

)
.

It’s worth graphing this on Desmos to see how it behaves over time. The x = 0
end cools down very rapidly, and the area of the bar closer to x = L cools much
more slowly.

2. Suppose that one end of the rod is held at temperature 0 and the other end is insulated:

u(0, t) = 0, ux(L, t) = 0. (3)

(a) Show that, if u(x, t) = X(x) ·T (t), then u is a scalar multiple of a function of the
form

un(x, t) = sin
(nπ

2L
x
)

exp(

(
−Kn2π2

4L2
t

)
,

where n is odd.

If u = X · T , then the heat equation becomes

XT ′ = KX ′′T

or
X ′′

X
=

T ′

KT
.
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Since the left-hand side is independent of t and the right-hand side is independent
of x, both sides must be equal to the same constant, say −λ. Then the ordinary
differential equation for X is

X ′′

X
= −λ

or
X ′′ + λX = 0. (4)

We should also interpret the boundary conditions in terms of X and T :

X(0)T (t) = X ′(L)T (t) = 0.

Since T (t) = 0 implies u(x, t) = 0, which is the trivial solution, we must have

X(0) = X ′(L) = 0. (5)

Now, there are three cases for (4), according to the sign of λ.

λ < 0: Then the solutions for X are linear combinations of exponential functions,

X(x) = C1exp(−
√
−λx) + C2exp(

√
−λx).

Evaluating at x = 0 and using the boundary condition there gives

0 = X(0) = C1 + C2.

Likewise,
0 = X ′(L) = −

√
−λC1 +

√
−λC2.

Since the coefficient vector 〈−
√
−λ,
√
−λ〉 isn’t a scalar multiple of 〈1, 1〉, this

system of equations for C1 and C2 has a single solution, which is clearly C1 =
C2 = 0. So the only solution with λ < 0 is the trivial solution.

λ = 0: Now we have
X(x) = C1 + C2x,

and (5) implies

0 = X(0) = C1,

0 = X ′(L) = C2.

So the only solution in this case is also trivial.

λ > 0: Here,
X(x) = C1 cos(

√
λx) + C2 sin(

√
λx).

The boundary conditions imply

0 = X(0) = C1,

0 = X ′(L) = C1

√
λ(− sin(

√
λL)) + C2

√
λ cos(

√
λL) = C2

√
λ cos(

√
λL).
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Since λ 6= 0, cos(
√
λL) must be zero. The zeros of the cosine function are of the

form nπ/2, where n is odd, and we only care about the positive solutions. Thus,

√
λL =

nπ

2
, n odd > 0,

so

λ =
n2π2

4L2
, n odd > 0.

Call this λn, so we have eigenvalues λ1, λ3, λ5, . . . . The associated eigenfunctions
are

Xn = sin
(nπx

2L

)
, n odd > 0.

(There’s another reasonable way to write this – we could write

λn =
(2n− 1)2π2

4L2
, Xn = sin

(
(2n− 1)πx

2L

)
, n = 1, 2, 3, . . . .

This would give us eigenvalues numbered λ1, λ2, and so on. Either way is fine, as
long as we’re consistent in what we call them, and we don’t miss any eigenvalues
or eigenfunctions.)

Returning to the original problem, we now have to solve the ODE for T :

T ′

KT
= −λ

or
T ′ = −λKT.

Solutions to this are of the form

T (t) = Cexp(−λKt).

Taking λ = λn, and choosing the constant of integration to be 1, we get solutions

Tn = exp(−λnKt) = exp

(
−Kn2π2t

4L2

)
, n odd.

These combine with the eigenfunctions Xn to give solutions to the problem of the
form

un = XnTn = sin
(nπ

2L
x
)

exp(

(
−Kn2π2

4L2
t

)
,

for n odd, as was claimed.

(b) It follows that any function

u(x, t) =
∑

n≥1 odd

bn sin
(nπ

2L
x
)

exp(

(
−Kn2π2

4L2
t

)
(6)
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is a solution to the heat equation satisfying (3). The initial temperature distribu-
tion is

u(x, 0) =
∑

n≥1 odd

bn sin
(nπ

2L
x
)
. (7)

But this is only useful if we can write any (reasonable, i. e., piecewise smooth)
function on [0, L] in the form (7)!

Convince yourself that this is true, as follows. Let f(x) be a function on [0, L].
Let F (x) be the odd 4L-periodic function such that

F (x) =

{
f(x) 0 ≤ x ≤ L

f(2L− x) L ≤ x ≤ 2L.
(8)

Show that the Fourier series of F (x) is of the form (7), and converges to f(x) at
all points on [0, L] where f(x) is continuous.

Initial remarks. Why is any function of the form (6) a solution to the heat
equation and boundary conditions? Because it’s a linear combination of the un,
each of which solves the heat equation and boundary conditions; and because
the heat equation and (3) are linear and homogeneous, meaning that they have
the property that their sets of solutions are closed under linear combinations.
(There’s still something that could go wrong with an arbitrary function of the
form (6), which is that it could fail to converge! But as long as the function
u(x, t) described there makes sense and is reasonable, we do get a solution to the
heat equation and boundary conditions.)

Why is the initial temperature distribution of (6) the function of x described in
(7)? We get this by substituting t = 0 into (6).

Can we just use the Fourier series for f to get the bn’s in (7)? The question
doesn’t quite make sense, as only periodic functions have Fourier series, and f ,
rather than being periodic, is only defined on the interval [0, L]. But we could
take certain periodic extensions of f and take their Fourier series. For instance,
we could take the L-periodic extension of f and get a Fourier series made of terms
that look like cos(2nπx/L) and sin(2nπx/L). This probably isn’t right, as the
terms in (7) only have sines. Or we could take the odd 2L-periodic extension of
f and get a Fourier sine series, made up of terms of the form sin(nπx/L). But
the frequencies nπ/L that show up here are different than the frequencies nπ/2L,
n odd, that show up in (7). So the series in (7) is a different kind of series. The
point of the problem is that it’s still a Fourier series, of a certain unusual periodic
extension of f , and so it still has nice convergence properties, we can calculate
the coefficients, etc.

Where does the idea for this strange 4L-periodic extension come from? Here are
the first few sine functions in the series (7), with L = 3 indicated by the dotted
line:
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All these functions have some properties in common. They’re all odd (since
they’re all sine functions), they’re all 4L-periodic, and they’re also all symmetric
about the line x = L. So any linear combination of them must have the same
properties. In particular, if we’ve figured out coefficients that express f(x) as a
sum of these functions on the interval [0, L], then on the rest of the real line, that
sum must be odd, 4L-periodic, and symmetric about x = L. Now, if f has been
specified on [0, L], there’s a unique extension of it to the whole real line that’s
odd, 4L-periodic, and symmetric about x = L (if you don’t believe me, draw a
graph of a random f and try to extend it elsewhere using these three properties!).
This extension is the one defined by (8).

Solution to the problem: Let F (x) be as described in (8). Let’s try to describe the
Fourier series of F (x). Since F is odd and periodic, it has a Fourier sine series;
since the period is 4L, this series looks like

F (x) ∼
∞∑
n=1

bn sin
(nπx

2L

)
.

To show that this series is of the form (7), we need to show that bn = 0 when n
is even. Note that the only symmetry property of F (x) that we haven’t used so
far is the fact that it’s symmetric about x = L.

So suppose n = 2k is even. Then b2k is given by the integral

b2k =
2

2L

∫ 2L

0

F (x) sin

(
2kπx

2L

)
dx.

Now, the function s(x) = sin
(
2kπx
2L

)
is “odd about the line x = L”, meaning that

if we rotate its graph by 180 degrees around the point (L, 0), we get the same
graph. Equivalently, s(2L−x) = −s(x). You can check this by looking at graphs,
or by calculation

s(2L− x) = sin

(
2kπ(2L− x)

2L

)
= sin

(
2kπ − 2kπx

2L

)
= sin

(
−2kπx

2L

)
= −s(x)
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because the sine function is odd. If we integrate any function with this property
on the interval [0, 2L], we get zero. This is because any positive contribution to
the integral on one side of x = L is cancelled out by an equal negative contribution
on the opposite side. (Make a sketch if you don’t believe me!) Now, since F (x)
is symmetric about x = L, F (x)s(x) is also odd about x = L. Indeed,

F (2L− x)s(2L− x) = F (x)(−s(x)) = −F (x)s(x).

Thus, the integral giving b2k vanishes, so b2k = 0. This is what we wanted to
prove.

(This hopefully seems familiar – it’s a variant of the argument we used to show
that the sine terms in the Fourier series for an even function, and the cosine
terms in the Fourier series for an odd function, vanish.)

(c) Find u(x, t), subject to (3), if the initial temperature distribution is constant:

u(x, 0) = H (0 < x ≤ L).

Let’s write
f(x) = u(x, 0) = H (0 < x ≤ L).

We need to write f(x) in the form (7). But the previous step in the problem told
us exactly how to do this – it’s just the Fourier series of the associated 4L-periodic
function F (x). Using the construction of (8), we have

F (x) = H (0 < x ≤ 2L), F (x) odd and 4L-periodic.

Since F (x) is odd, its Fourier series is a Fourier sine series. We have

bn =
2

2L

∫ 2L

0

H sin
(nπx

2L

)
dx

=
1

L

[
−H 2L

nπ
cos
(nπx

2L

)]2L
0

=
−2H

nπ
(cos(nπ)− 1)

=
2H

nπ
(1− cos(nπ)).

Note that this is 0 if n is even, as predicted. If n is odd, it’s 4H/nπ.

So we have the series expansion

H = f(x) ∼
∑

n≥1 odd

4H

nπ
sin
(nπx

2L

)
, 0 < x ≤ L.

The associated solution to the problem is

u(x, t) =
∑

n≥1 odd

4H

nπ
sin
(nπ

2L
x
)

exp

(
−Kn2π2

4L2
t

)
.
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