
Math 303 Midterm 1 Review Sheet

Due September 19, 2019

1. The meaning of a differential equation.

(a) You should know what it means for a function to solve a differential equa-
tion, or an initial value problem.

(b) You should know how to translate a real-world phenomenon or word prob-
lem into a differential equation, and understand what the solutions to this
equation tell you about the problem. There’s no set curriculum for this,
but you should especially be able to handle mechanical problems about
springs and the like, and problems involving population dynamics. See
sections 3.4, 5.4, and 6.3 of the book for some examples, as well as (ADD
URL).

(c) Some commonly occurring phenomena we’ve seen in class:

(i) Functions of the form

A cos(ωt), A sin(ωt)

oscillate with amplitude A and angular frequency ω, and with period
2π/ω. Any linear combination of the form

A cos(ωt) +B sin(ωt)

can be simplified to a function of the form

R cos(ωt− δ).

(ii) Functions of the form
ekt

grow exponentially if k is positive, or decay exponentially if k is neg-
ative. The function takes time 1/|k| to grow/shrink by a factor of e.
The doubling time/half-life is ln(2)/|k|.

(iii) Functions of the form
A cos(ωt)ekt

and so on oscillate and grow/decay simultaneously.
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(iv) Functions of the form
P (t)ekt,

where P is a polynomial, behave similarly to ekt after a sufficient
amount of time passes.

(d) A system of nth-order differential equations can typically be turned into a
first-order system, by introducing new variables for the first, . . . , (n−1)th
derivatives of the functions.

2. Solving first-order homogeneous linear systems with constant coeffi-
cients. (Sections 5.1, 5.2, and 5.5.)

(a) You should be able to solve systems of the form

x′ = Ax, (1)

where mathbfx is an n×1 vector-valued function and A is an n×n matrix
of constants. I will only ask you to solve at most 2-dimensional systems by
hand, but I may ask you questions about the process for higher-dimensional
systems.

(b) The set of solutions to such an equation forms an n-dimensional vector
space.

(i) That is, any linear combination of solutions is also a solution, and any
linearly independent set of solutions has at most n elements.

(ii) If we turn (1) into an initial value problem by fixing the value of x(0),
then this problem has a unique solution.

(iii) Given n functions x1, . . . ,xn, we can check whether they’re linearly
independent by evaluating the Wronskian, which is the determinant
of the matrix that has xi for columns. The functions are linearly
independent at some time t if their Wronskian is nonzero at t.

(iv) If x1, . . . ,xn are solutions to (1), then their Wronskian is nonzero at
some time t if and only if it is nonzero at all times t.

(c) To solve (1), first find the eigenvalues of A, which are the roots of the
characteristic polynomial

det(A− λI).

There are n eigenvalues, counting repetitions.

(d) Then, for each eigenvalue λ, find an associated eigenvector. This is a
solution v to the equation

Av = λv or (A− λI)v = 0.

The set of eigenvectors of λ forms a vector space. If λ is repeated k times,
then its space of eigenvectors has dimension between 1 and k inclusive.
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(e) If v is an eigenvector of A with eigenvalue λ, then the function

x(t) = veλt

is a solution of (1).

(f) Complex eigenvalues:

(i) Assuming that A has real entries, any non-real eigenvalues will come
in conjugate pairs, {λ, λ}. If v is an eigenvector for λ, then v is an
eigenvalue for λ.

(ii) The real and imaginary parts of the solution veλt are both real-valued
solutions. Thus, the pair of complex-valued solutions associated to λ
and λ contribute a pair of real-valued solutions.

(iii) You can calculate the real and imaginary parts by expanding eλt using
Euler’s formula:

e(a+bi)t = eatebit = eat(cos(bt) + i sin(bt)).

(g) Repeated eigenvalues:

(i) If an eigenvalue repeated k times has k linearly independent eigen-
vectors, then there’s nothing to worry about: you can use the above
methods to find k linearly independent solutions associated to the
eigenvalue.

(ii) Otherwise, you need to look for generalized eigenvectors, which are
solutions to (A−λI)rv = 0. The set of generalized eigenvectors forms
a k-dimensional vector space.

(iii) Suppose v1 satisfies (A− λI)rv1 = 0 but not (A− λI)r−1v1 = 0. Let

v2 = (A− λI)v1, . . . ,vr = (A− λI)r−1v1.

Then the following is a solution to (1):

x(t) =

(
tr−1

(r − 1)!
vr + · · ·+ tv2 + v1

)
eλt.

(iv) In the 2× 2 case, let v be an eigenvector of A with eigenvalue λ. Let
w satisfy

(A− λI)w = v.

Then two linearly independent solutions are

x1(t) = veλt, x2(t) = (tv + w) eλt.

3. Nonlinear systems and critical point analysis. (Sections 6.1 and 6.2.)

(a) The behavior of solutions to linear systems around the origin depends on
the eigenvalues. See the table on the next page.
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Name How do the solutions behave? When does it happen?

Source Leave the origin as t→∞ Eigenvalues have real parts
> 0

Sink Approach the origin as t →
∞

EIgenvalues have real parts
< 0

Saddle point Approach the origin along
one line, then leave along an-
other

One positive and one nega-
tive eigenvalue

Proper node Approach/leave along all
lines through the origin

Repeated nonzero eigen-
value with a full (2-
dimensional) space of
eigenvectors

Improper
node

Approach/leave along one
line

Real nonzero eigenvalues
and not a proper node

Spiral point Approach/leave along spi-
rals

Complex eigenvalues with
nonzero real parts

Center Orbit the origin along el-
lipses

Complex eigenvalues with
zero real part

Joker’s trick If zero is an eigenvalue, be
careful and keep your wits
about you

Zero is an eigenvalue

Stable Solutions that start close to
the origin stay close to the
origin

Nodal or spiral sink, or cen-
ter

Unstable Not stable Nodal or spiral source, or
saddle point

Asymptotically
stable

Solutions that start close to
the origin approach the ori-
gin as t→∞

Nodal or spiral sink
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(b) Now consider nonlinear systems of the form

x′ = F (x, y),

y′ = G(x, y).

A critical point of the system is a point (x, y) where x′ = y′ = 0. The
same sort of analysis can be used to describe behavior close to the critical
point.

(c) The Jacobian of the system is the matrix

J(x, y) =

(
Fx Fy
Gx Gy

)
.

(d) Let (xc, yc) be a critical point of the system. We say that the system is
almost linear there if (i) F and G have continuous first partial derivatives
at (xc, yc), (ii) (xc, yc) is an isolated critical point, and (iii) zero is not an
eigenvalue of J(xc, yc). In this case, the system has a Taylor expansion(

u′

v′

)
= J(xc, yc)

(
u
v

)
+

(
r(u, v)
s(u, v)

)
,

where u = x − xc, v = y − yc, and r and s are “remainder” functions
satisfying

lim
(u,v)→(0,0)

r(u, v)√
u2 + v2

= lim
(u,v)→(0,0)

s(u, v)√
u2 + v2

= 0.

The linearization of the original system at (xc, yc) is the linear system(
u′

v′

)
= J(xc, yc)

(
u
v

)
.

(e) If the nonlinear system is almost linear, its linearization approximates it
well near the critical point. In particular, the critical point of the non-
linear system is of the same type and stability as the critical point of the
linearization except in two special cases:

(i) If the linearization has a center (complex conjugate eigenvalues with
zero real part), the nonlinear system can have a center or a stable or
unstable spiral point.

(ii) If the linearization has a node with equal real eigenvalues, the non-
linear system can have a node or a spiral point, but with the same
stability as the node in the linearization.

(f) You should be able to sketch and interpret phase planes (graphs of y versus
x) and graphs of x and y versus t.
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4. Application: interacting species. (Section 6.3.)

(a) The predator-prey model.

x′ = ax− pxy,
y′ = −by + qxy,

where x is the prey population, y is the predator population, and a, b, p, q
are positive constants. This has a nonzero critical point at (b/q, a/p), and
solutions orbit it stably with angular frequency

√
ab.

(b) The competing species model.

x′ = a1x− b1x2 − c1xy,
y′ = a2y − b2y2 − c2xy,

where x and y are the populations of the two species and the other numbers
are positive constants. The two populations grow logistically on their
own but also compete over resources, leading to nesgative effects of their
interaction. The system has four critical points: one at the origin, two of
the form (Kx, 0) and (0, Ky) at which one species is extinct and the other
is at carrying capacity, and a fourth where both species have nonzero
population. The fourth critical point is an unstable saddle point if c1c2 >
b1b2, and an asymptotically stable node if c1c2 = b1b2. In the unstable
case, which species survives and which goes extinct depends on the species’
initial values.

(c) Other examples. You should be able to apply this sort of reasoning to
other situations. What if the species in (b) cooperate (so that the negative
terms −c1xy, −c2xy are replaced by positive ones)? What if the logistic
terms in (b) are added into the predator-prey model of (a)? What if
one species is a scavenger that reproduces not based on the other species’
population, but rather its death rate? What if there are more than two
species forming a food chain or food network?
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