
Math 303, Practice Final Solutions

Instructions: The real exam is 2 hour long and has 15 questions, worth 200 points in total.
No calculators or notes will be permitted.

If you want your work graded, make sure it’s understandable and it’s clear which question
it’s referring to. If you tear pages out, write your name on top of them. If you finish early,
you can hand the exam in up front and leave.
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Part I: Multiple Choice
Each question is worth 5 points, and has a single correct answer. There will be no partial

credit.

1. A mass of 0.2 kg is attached to a spring with spring constant 0.8 kg/s2 and damping
constant 0.1 kg/s. Which of the following forcing functions will provoke the largest
response in the spring?

(a) F (t) = sin(0.7t)
(b) F (t) = sin(1.7t)
(c) F (t) = cos(3.7t)
(d) F (t) = cos(5(t− 1))

Answer: (b). All the forcing functions have the same amplitude, so the one with
the largest response amplitude will be the one closest to the resonant frequency of the
spring, which is the frequency of its undamped oscillations. We can find the undamped
oscillations explicitly:

0.2x′′ + 0.1x′ + 0.8x = 0

is a constant-coefficient ODE with characteristic polynomial

0.2r2 + 0.1r + 0.8,

which has roots
r =

−1±
√
−63

4
=

−1

4
± i

√
63

4

So the unforced solutions are

x = C1e
−t/4 cos(

√
63t/4) + C2e

−t/4 sin(
√
63t/4).

These have angular frequency
√
63/4 ≈ 2. (b) is the only forcing function with a

frequency reasonably close to this.
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2. Which one of the following is an example of a regular Sturm-Liouville problem?

(a)
d

dx

(
1

x

dy

dx

)
− xy + λy = 0, −1 < x < 1; y(−1) = y′(1) = 0

(b)
X ′′ + λX = 0, 0 < x < 5

(c)
y′′ + (1 + λ)y = 0, 0 < x < 2; y(0) = y′(0) = 0

(d)
U ′′ + x2U + λU = 0, 0 < x < 1; y(0) = 3y(1)− y′(1) = 0

(e)
r2U ′′ + rU ′ + U = 0, 0 < r < 3; U(0) = U ′(3) = 0

Answer: (d). (a) isn’t regular since the coefficient function 1/x is discontinuous at
0, which is in the interval of definition. (b) isn’t regular since it has no boundary
conditions. (c) isn’t regular since it has two boundary conditions at one endpoint of
the interval, and no boundary condition at the other end. (e) isn’t regular since the
differential equation doesn’t have a λ in it, meaning there’s no eigenvalue to find.
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3. Suppose that f is a piecewise smooth, 2π-periodic function with Fourier series

f(t) ∼
∞∑
n=1

1

n
sin(nx).

Which of the following is the Fourier series of f ′(t)?

(a)
∑∞

n=1 sin(nx)
(b)

∑∞
n=1 cos(nx)

(c)
∑∞

n=1− cos(nx)
(d)

∑∞
n=1 sin(2nx)

(e) None of the above / impossible to say without further information.

Answer: (e). The temptation is to differentiate term by term, giving (b), but we
can’t do this unless we know that f is continuous, which we do not. The fact that (b)
diverges at x = 0 should be at least a source of worry. In fact, f is a discontinuous
sawtooth wave, whose derivative is constant wherever it’s defined, so (b) is the wrong
answer.
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4. Consider the regular Sturm-Liouville problem

X ′′ + λxX = 0, 1 ≤ x ≤ 2; X ′(1) = X ′(2) = 0.

Suppose that λn are the eigenvalues for this problem, Xn are the associated eigenfunc-
tions, and y is an arbitrary function on [1, 2], with eigenfunction series

y(x) ∼
∑

CnXn(x).

What is the correct expression for Cn?

(a)

Cn =

∫ 2

1

yXn dx

(b)

Cn =

∫ 2

1
yXn dx∫ 2

1
X2

n dx

(c)

Cn =

∫ 2

1
xyXn dx∫ 2

1
xX2

n dx

(d) Cn = 1 if y = Xn and 0 otherwise.
(e) None of the above.

Answer: (c). This is an application of the formula for the coefficients of an eigen-
function series, which is in section 10.1 of the book.
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5. One possible steady-state heat distribution on a disk of radius 1 is

u(r, θ) =
π

2
+

∞∑
n=1

2(cos(nπ)− 1)

πn2
rn cos(nθ).

Which of the following boundary conditions does this satisfy?

(a) u(1, θ) = |θ| (for −π ≤ θ ≤ π)
(b) u(1, θ) = θ (for 0 ≤ θ ≤ 2π)
(c) u(1, θ) = θ (for −π ≤ θ ≤ π)
(d) u(1, θ) = θ2 (for −π ≤ θ ≤ π)
(e) u(1, θ) = u(0, θ) = 0

Answer: (a) We have

u(1, θ) =
π

2
+

∞∑
n=1

2(cos(nπ))− 1)

πn2
cos(nθ),

and the question is which of the functions given has this as its Fourier series. (Sanity
check: they are all functions on the circle, so they’re 2π-periodic functions of θ, which
means they have Fourier series that are sums of sin(nθ) and cos(nθ) for various n.) It’s
clearly not (e) ((e) also specifies a value at r = 0 which doesn’t agree with the given
function). Also, our Fourier series is a cosine series, so it converges to an even function,
so we can rule out (b) and (c). We can choose between (a) and (d) by computing their
Fourier series. For (a), we have

a0 =
1

π

∫
−π

π|θ| dθ =
1

π

(∫ π

0

θ dθ −
∫ 0

−π

θ dθ

)
=

1

π

(
π2

2
+

π2

2

)
= π.

For (d), we have

a0 =
1

π

∫
−π

πθ2 dθ =
1

π
· 2π

3

3
=

2π2

3
.

Since our a0/2 is π/2, (a) is the only possible answer (and we could check it by com-
puting the rest of its Fourier coefficients.)
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6. Which of the following problems, consisting of a partial differential equation with some
boundary conditions, satisfies the following property?
(P) If u1 and u2 are solutions to the problem, then so is any linear combination C1u1+
C2u2.

(a) uxx + uyy = 0 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 2; u(0, y) = u(1, y) = 0, u(x, 0) = x,
u(x, 1) = uy(x, 1).

(b) r2urr + rur + uθθ = 0 for 0 ≤ r ≤ 5; u(r, θ) = u(r, θ + 2π); ur(5, θ) = 0.
(c) utt = v2uxx for 0 ≤ x ≤ 3; u(0, t) = u(L, t) = 0, ut(x, 0) = 0, u(x, 0) = x(L− x).
(d) ut −Kuxx = 0 for 0 ≤ x ≤ L; u(0, t) = ux(L, t)− u(L, t)2 = 0.

Answer: (b). For instance, suppose u1 and u2 are solutions to (a), and let u =
C1u1 + C2u2 for some numbers C1 and C2. Then

u(x, 0) = C1u1(x, 0) + C2u2(x, 0) = C1x+ C2x.

If C1+C2 = 1, this is not equal to x. Similarly, in (c), the condition u(x, 0) = x(L−x)
fails (P), and in (d), ux(L, t)− u(L, t)2 = 0 fails (P). That leaves (b). By the way, (b)
has a physical interpretation you might have recognized: it describes steady-state heat
on a disk of radius 5 which is insulated around its boundary.
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7. When a certain string of length 1 is allowed to vibrate with its ends fixed, it vibrates
with fundamental frequency 330 Hz. As the string vibrates, the point 3/4 of the way
along its length is also held fixed. What (to the nearest hertz) is the new fundamental
frequency of the resulting vibrations?

(a) 83 Hz
(b) 248 Hz
(c) 440 Hz
(d) 660 Hz
(e) 1320 Hz

Answer: (e). The Fourier series solution to the wave equation tells us that every
vibration of this string with L = 1 m is a sum of standing waves of the form

sin(nπx) cos(nπvt), sin(nπx) sin(nπvt).

The angular frequency of such waves is nπv (radians per second), so their frequency in
Hertz (i. e. cycles per second) is nv/2. The lowest such frequency is v/2, meaning that
v is 660 m/s. Now, if x = 3/4 is held fixed, the only standing waves that can survive
are those with y(3/4, t) = 0 for all t. This means

sin(3nπ/4) = 0,

which means n is a multiple of 4. So the new lowest angular frequency is 4πv, and the
new lowest frequency in Hertz is 2v = 1320 Hz.
Three notes: first, you don’t need to calculate v, or even know the length of the string,
to do this – you could just recognize, say by drawing graphs, that fixing this point
causes the wavelength of the longest-wavelength standing wave to shrink by 1/4, and
thus its frequency to grow by a factor of 4. Second, the situation is different if the
entire portion of the string from x = 3/4 to x = 1 is fixed. In this case, the string
would start behaving like a string of length 3/4, and since v depends on the string’s
physical properties and presumably wouldn’t change, the new fundamental frequency
would be 4/3 times the old one, or 440 Hz. Third, the argument above doesn’t work
if you fix a point with irrational x-value. In this case, none of the old standing waves
could survive. I’m not sure what happens, but I’d guess that you would just completely
silence the string.
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8. A population of predators feeds on a population of prey animals, leading to a decrease
in the prey population, and an increase in the predator population, both of which
are proportional to the product of the predator and prey populations. If the predator
population is left alone, it decays exponentially, and if the prey population is left alone,
it grows logistically. Which of the following systems of differential equations is the best
model for this situation? Assume all constants are positive.

(a) x′ = a1x− b1x
2 − c1xy, y′ = −a2y + c2xy

(b) x′ = a1x+ b1x
2 − c1xy, y′ = −a2y + b2y

2 − c2xy

(c) x′ = a1x− c1xy − d1x
2y, y′ = exp(−a2y) + c2xy

(d) x′ = a1x− c1y, y′ = −a2y + c2xy

(e) x′ = a1x+ b1y − c1xy, y′ = −a2y + b2x− c2xy

Answer: (a). Say x is the prey and y is the predators. The first sentence tells us that
x′ has a term of the form −Axy and y has a term of the form +Bxy, where I’m using
capital letters for various positve constants. The second sentence tells us that y′ has a
term like −Cy (which creates exponential decay); and that x′ has terms like Dx−Ex2

(which creates logistic growth). If you have trouble remembering this stuff, it’s good
to just logic through what each term means – for example, a term Dx in x′ means x
has a tendency to grow proportional to the current population (that is, exponentially),
and a term −Ex2 means that this growth slows as x gets larger. Anyway, (a) is the
only answer of this form. We should also make sure that none of the other answers
make sense if x is the predators and y is the prey instead, but they don’t.
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9. Which of the following functions is piecewise smooth on its domain?

(a) The 2-periodic function on the real line, equal to |x| on the interval [−1, 1].
(b) The function ln(x) on the interval [1, 2].
(c) The constant function 0 on the interval [0, 10].
(d) The 1-periodic function on the real line, equal to sin(x) + 2 cos(x) on [0, 1].
(e) All of the above.

Answer: (e). “Piecewise smooth” means we can break the domain into intervals
such that f is continuous on each interval; it has finite, well-defined one-sided limits
at each endpoint of each interval; and the same conditions apply to f ′. Now, (c) is
continuously differentiable on its whole domain. So is (b) – ln(x) goes to −∞ as x goes
to 0, but this isn’t in the domain. (a) is continuous everywhere (draw a graph) and
differentiable everywhere except x = an integer. At these points, the one-sided limits
of f ′(x) are ±1. Likewise, (d) is continuously differentiable on each interval [n, n+ 1],
and doesn’t do anything ridiculous at the discontinuities.
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10. This is the position of a string of length 4 and wave speed 2 at t = 0:

The string’s ends are fixed, and it has no initial velocity. What is the position of the
string at time t = 2?

(a)

(b)

(c)

(d)

(i. e. the zero function)
Answer: (a). The trick here is the d’Alembert solution,

y(x, t) =
1

2
(Fodd(x+ vt)± Fodd(x− vt)) ,

where y has zero initial velocity, f(x) = y(x, 0) is the initial position function, and
Fodd is the odd 2L-periodic extension of f . In practice, you can draw Fodd from f ,
translate it to the left and right, and take the average, all by hand (and you should do
this so you understand!). In this case, we want to take the average of Fodd(x+ 4) and
Fodd(x− 4). It turns out that both of these are the same as the graph of (a), so their
average is also (a).
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Part II: Long Answer Problems
Each of these questions is worth 30 points. You can get partial credit on these, based on
the work you do towards an answer. To get the most partial credit, make sure your work is
legible and understandable.

11. Find all the critical points of the following nonlinear system, and describe the type
and stability of each critical point as fully as you can.

x′ = y2 − 1,

y′ = sin(x)− y.

The critical points are the solutions to

0 = y2 − 1,

0 = sin(x)− y.

These are the points (π/2 + 2kπ, 1) and (3π/2 + 2kπ,−1) where k is any integer. The
Jacobian of the system is

J(x, y) =

(
0 2y

cos(x) −1

)
.

At these critical points,
J =

(
0 ±2
0 −1

)
.

The determinant of J is zero, so even though the critical points are isolated, the system
is not “almost linear”. That is, we can’t conclude anything about the system’s behavior
near its critical points from the linearizations there.
You can graph this system on pplane and see that its critical points are actually of a
type we didn’t study. They have one tangent direction where solutions approach the
critical point, and another one where they approach it from one side and leave it from
the other side.
This is a badly written question, but you can easily write more by yourself. Just pick
two functions F (x, y) and G(x, y), ask yourself the same question about the system
x′ = F (x, y) and y′ = G(x, y), and check your answers in pplane. There are lots of
simple systems in the exercises to chapter 6 of the book you can also use.
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12. Find the general solution to the system

x′ =

1 1 1
0 1 2
0 0 3

x.

The matrix is upper triangular, so its eigenvalues are 1, 1, and 3. For λ = 3, we find
the eigenvector (1, 1, 1)T , giving a solution

x =

1
1
1

 e3t.

For λ = 1, we have the eigenvector (1, 0, 0)T , giving another solution

x =

1
0
0

 et.

However, there is only a one-dimensional space of eigenvectors for λ = 1. To find our
third independent solution, we need to look for a generalized eigenvector w satisfying

(A− 1 · I)w =

1
0
0

 .

One such vector is (0, 1, 0)T . So we get a third solution,

x =

1
0
0

 tet +

0
1
0

 et.

The general solution is then

x = C1

1
1
1

 e3t + C2

1
0
0

 et + C3

1
0
0

 tet +

0
1
0

 et

 .

It’s very likely you got something that looks different, in which case it’s good practice
to check that it describes the same set of solutions as my solution above.
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13. A metal rod of thermal diffusivity K and length L is laterally insulated, so that the
temperature distribution u(x, t) satisfies the heat equation

ut = Kuxx.

The 0 end of the rod undergoes heat transfer with a surrounding medium at tem-
perature zero, while the L end of the rod is insulated, so u satisfies the boundary
conditions

hu(0, t)− ux(0, t) = 0, ux(L, t) = 0.

Find the general solution u(x, t).
We separate variables,

u(x, t) = X(x)T (t).

Then the differential equation becomes

XT ′ = KX ′′T

or
X ′′

X
=

T ′

KT
.

Each side is independent of one of the two variables, so they’re both equal to the same
constant, say −λ. The boundary conditions also tell us that

hX(0)−X ′(0) = 0, X ′(L) = 0.

Together with the X equation, these give a regular Sturm-Liouville problem for X,
namely

X ′′ + λX = 0 (0 < X < L);hX(0)−X ′(0) = 0, X ′(L) = 0.

The problem is nonnegative (assuming that h is a positive constant), so the eigenvalues
are nonnegative. If λ = 0, then X is a linear function of x,

X = C1 + C2x.

You can check that the only function like this satisfying the boundary conditions is
the zero function. If λ > 0, then

X = C1 cos(
√
λx) + C2 sin(

√
λx).

The boundary conditions imply that

0 = hX(0)−X ′(0) = hC1 −
√
λC2,

0 = X ′(L) = −C1

√
λ sin(

√
λL) + C2

√
λ cos(

√
λL).

From the first equation, we get C1 =
√
λ
h
C2. The second is then

0 = −λ

h
C2 sin(

√
λL) +

√
λC2 cos(

√
λL).
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Dividing by C2 and rearranging, we get
√
λ

h
=

cos(
√
λL)

sin(
√
λL)

= cot(
√
λL).

In other words,
√
λL satisfies the equation

x

hL
= cot(x).

In other words, if βn is the nth positive solution to this equation, then βn =
√
λnL, so

λn = β2
n/L

2. We check that these numbers actually exist by sketching a graph of the
cotangent function. In sum, we’ve found the eigenvalues,

λn =
β2
n

L2
, βn = nth positive solution to x/hL = cot(x),

and the eigenfunctions

Xn =

√
λn

h
cos(

√
λnx) + sin(

√
λnx) =

βn

hL
cos

(
βnx

L

)
+ sin

(
βnx

L

)
.

For each λn, we have a first-order equation for the corresponding function Tn, namely

T ′
n = −λnKTn.

So
Tn = exp(−Kλnt) = exp

(
−Kβ2

n

L2
t

)
.

Thus the general solution is

u =
∑

CnXnT − n =
∞∑
n=1

Cn

[
βn

hL
cos

(
βnx

L

)
+ sin

(
βnx

L

)]
exp

(
−Kβ2

n

L2
t

)
,

where βn is the nth positive solution to x/hL = cot(x).
I hope I don’t have to say this, but if you solve a problem like this on the exam and
you want full credit, you do need to define βn in words at some point in your solution!
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14. An undamped spring-mass system of mass 1 kg and spring constant 2 kg/s2 is forced
by a sawtooth wave function F (x), which is 2-periodic and given by F (t) = t on the
interval [−1, 1]. Give a formula for the displacement of the mass, x(t), as a function
of time.
We want to solve the differential equation

x′′ + 2x = F (t).

We start by writing F as a Fourier series. It is odd, so this will be a sine series. We
have

bn =
2

1

∫ 1

0

t sin(nπt) dt = 2

[
−t

cos(nπt)
nπ

]1
0

+ 2

∫ 1

0

cos(nπt)
nπ

dt

=
−2 cos(nπ)

nπ
+ 2

[
sin(nπ)
n2π2

]1
0

=
−2 cos(nπ)

nπ
.

So we have to solve
x′′ + 2x =

∞∑
n=1

−2 cos(nπ)
nπ

sin(nπt).

Let’s first solve
x′′
n + 2xn = sin(nπt).

We do this with undetermined coefficients, xn = An sin(nπt). Then

−n2π2An sin(nπt) + 2An sin(nπt) = sin(nπt).

Comparing coefficients gives

An(−n2π2 + 2) = 1,

so
An =

1

2− n2π2
.

(Note that 2 isn’t a square, so we’re never dividing by zero here. What would happen
if the spring constant was 4 instead?) Thus,

xn =
sin(nπt)
2− n2π2

.

The formula for the steady periodic solution is then

x =
∑

bnxn =
∞∑
n=1

−2 cos(nπ)
nπ

· sin(nπt)
2− n2π2

.

I forgot to specify whether the steady periodic solution or the general solution was
required in this problem. The general solution is given by adding the general solution
to the associated homogeneous equation, x′′ + 2x = 0, to this particular solution. It is

x =
∞∑
n=1

−2 cos(nπ)
nπ

· sin(nπt)
2− n2

+ C1 cos(
√
2t) + C2 sin(

√
2t).
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15. An infinite metal strip of the form {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y} is delivered to you in a
mysterious, infinitely long package, together with the following instructions:

HOLD X AXIS EDGE AT 100 DEGREES

HOLD OTHER TWO EDGES AT 0 DEGREES

MAKE SURE TEMPERATURE IS BOUNDED AND CONTINUOUS

WAIT FOR STEADY STATE

DONT THINK ABOUT THE CORNERS

What is the temperature distribution u(x, y) after you follow the instructions?
Since we want the steady-state temperature distribution, we are looking for solutions
to

uxx + uyy = 0

on the given domain, subject to the boundary conditions

u(0, y) = u(1, y) = 0 (0 < y),

u(x, 0) = 100 (0 < x < 1),

u is bounded as y → +∞.

Let’s ignore the nonhomogeneous boundary condition u(x, 0) = 100 at first. Separate
variables, writing

u = X(x)Y (y),

and obtaining
X ′′

X
= −Y ′′

Y
= −λ.

We start with the equation for X, as there are two boundary conditions affecting it.
Namely, the conditions on the sides of the strip imply that

X(0) = X(1) = 0.

Thus we want to solve

X ′′ + λX = 0, (0 < x < 1), X(0) = X(1) = 0,

which is a regular, nonnegative Sturm-Liouville problem. Since it’s nonnegative, we
can ignore the case where λ is negative, and it is easily checked that the λ = 0 case
has no nontrivial solutions. If λ > 0, then

X = C1 cos(
√
λx) + C2 sin(

√
λx),

and the boundary conditions imply

C1 = 0, C1 cos(
√
λ) + C2 sin(

√
λ) = 0.
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Thus sin(
√
λ) is zero, so

√
λ is an integer multiple of π. Let

λn = n2π2, n = 1, 2, 3, . . . .

An associated eigenfunction is
Xn = sin(nπx).

Now we turn to Y . For each n, we have the problem

Y ′′
n − λnYn = 0, (0 < y)

where Yn is supposed to be bounded as y → ∞. The solutions to the ODE are

Yn = C1 exp(−
√
λny) + C2 exp(

√
λny) = C1e

−nπy + C2e
nπy.

This is only bounded if C2 = 0; otherwise, it grows to ±∞ (depending on the sign of
C2) as y → +∞. So let

Yn = enπy.

Then for each n,
un = XnYn = sin(nπx)enπy

is a building block solution to the problem. The general solution is

u =
∞∑
n=1

Cn sin(nπx)enπy.

Finally, we need the particular solution with

u(x, 0) = 100 (0 < x < 1).

So
100 =

∞∑
n=1

Cn sin(nπx) (0 < x < 1).

In other words,
∑

Cn sin(nπx) is the Fourier sine series for the odd, 2-periodic exten-
sion of the constant function 100. We calculate

Cn = 2

∫ 1

0

100 sin(nπx) = 200

[
− cos(nπx)

nπ

]1
0

=
200(1− cos(nπ))

nπ
.

So the particular solution is

u(x, y) =
∞∑
n=1

200(1− cos(nπ)
nπ

sin(nπx)enπy.
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