Math 303, Practice midterm 2

Instructions: The real exam is 1 hour long and has 6 questions. No calculators or notes will be permitted. For each question, the correct multiple-choice answer gets you full credit. For an incorrect answer, you will get partial credit based on the work you do towards the answer.

1. The equation of motion of a damped pendulum is

$$
\theta^{\prime \prime}+\gamma \theta^{\prime}+\frac{g}{L} \sin (\theta)=0
$$

where L is the pendulum's length, γ is the damping constant, $g>0$ is the acceleration due to gravity, and θ is the angle of the pendulum, measured so that $\theta=0$ when the pendulum is at the bottom of its swing.

Suppose that the damping constant γ is fixed, but we can adjust the pendulum's length L. Describe the critical behavior at $\theta=0$.
(a) A nodal sink for all values of L
(b) A spiral sink for all values of L
(c) A center if L is small, and a nodal sink if L is large
(d) A spiral sink if L is small, and a nodal sink if L is large
(e) A nodal sink if L is small, and a spiral sink if L is large
(f) None of the above
2. Suppose that the piecewise smooth function shown has the Fourier series

$$
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \pi t / 2)+b_{n} \sin (n \pi t / 2)\right)
$$

What is $\frac{a_{0}}{2}-a_{1}+a_{2}-a_{3}+a_{4}-\cdots$?
(a) 1
(d) 0
(b) -1
(e) $1 / 2$
(c) $\pi^{2} / 6$
(f) None of the above
3. Let F be the odd 4-periodic function such that

$$
F(t)= \begin{cases}0 & 0 \leq t \leq 1 \\ t-1 & 1 \leq t<2\end{cases}
$$

What is the 1000th coefficient in the Fourier series for F ?
(a) $1 / 500 \pi$
(d) 0
(b) $(4-2000 \pi) / 1000^{2} \pi^{2}$
(e) $1 / 2000 \pi^{2}$
(c) $(4+2000 \pi) / 1000^{2} \pi^{2}$
(f) None of the above
4. An undamped spring-mass system with mass 2 kg and spring constant $5 \mathrm{~kg} / \mathrm{s}^{2}$ is forced by the 4 -periodic sawtooth wave given by $F(t)=2 t$ for $t \in(-2,2)$. F is measured in Newtons and t is measured in seconds. If the mass also moves with period 4 , which of the following is the best approximation to the amplitude of its motion in meters?
(a) $\frac{8}{5 \pi-0.5 \pi^{3}}$
(d) $\frac{8}{5 \pi}$
(b) $\frac{8}{4 \pi^{3}-10 \pi}$
(e) $\frac{8}{\pi-2 \pi^{2}}$
(c) $\frac{8 \pi-8}{5 \pi^{2}-0.5 \pi^{4}}$
5. A 1-meter aluminum bar with thermal diffusivity $1 \mathrm{~cm}^{2} / \mathrm{s}$ is insulated around the sides so that no heat can escape, and its two ends are held at absolute zero. At time $t=0$ s , half of the bar is at absolute zero and the other half is at 400 K . What is the exact temperature (in K) at the bar's midpoint at $t=1000 \mathrm{~s}$?
(a) 0
(b) 200
(c) $800 \sum_{n=1}^{\infty} \frac{1}{\pi n} \sin (\pi n / 2) \exp \left(-\pi^{2} n^{2}\right)$
(d) $800 \sum_{n=1}^{\infty} \frac{1}{\pi n} \sin ^{2}(\pi n / 4) \sin (\pi n / 2) \exp \left(-\pi^{2} n^{2}\right)$
(e) $800 \sum_{n=1}^{\infty} \frac{1}{\pi n} \sin ^{2}(\pi n / 4) \sin (\pi n / 2) \exp \left(-\pi^{2} n^{2} / 10\right)$
(f) None of the above
6. Find the steady-state solution to the following differential equation:

$$
x^{\prime \prime}+2 x^{\prime}+3 x=1+\sum_{n=1}^{\infty} \frac{1}{n^{2}} \cos (n t) .
$$

(a) $x=C_{1} e^{-t} \cos (\sqrt{2} t)+C_{2} e^{-t} \sin (\sqrt{2} t)$
(b) $x=\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left(\frac{3-n^{2}}{\left(3-n^{2}\right)^{2}+4 n^{2}} \cos (n t)+\frac{2 n}{\left(3-n^{2}\right)^{2}+4 n^{2}} \sin (n t)\right)$
(c) $x=\sum_{n=1}^{\infty} \frac{1}{n^{2}\left(\left(3-n^{2}\right)^{2}+4 n^{2}\right)} \cos (n t)$
(d) $x=\sum_{n=1}^{\infty} \frac{\cos (n t-\pi n / 2)}{n^{2} \sqrt{\left(3-n^{2}\right)^{2}+4 n^{2}}}$
(e) None of the above
(Scratch paper)
(Scratch paper)
(Scratch paper)

