Name:
PUID:

DO NOT TURN THE PAGE UNTIL INSTRUCTED!

There are 10 points for each problem. The first two problems have to be answered in a written response and a complete argument has to be presented. For the following 8 multiple choice problems, the 10 points are achieved if the correct response is indicated on this page. Up to 5 points can be achieved if a written response on the page of the problem contains essential ideas how to solve the problem.
Please fill in your answers in the following table:

1. Let V be a vector space. Give the definition of the dimension of V.
(Continue your answer on the back of the page, if needed.)
2. Let A be a 4×2 matrix. Suppose that there is a vector $B=\left[b_{1}, b_{2}, b_{3}, b_{4}\right]^{T}$, such that

$$
A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=B
$$

has a 2-dimensional solution set. Is it true that $A X=C$ always has at least one solution, for every $C=\left[c_{1}, c_{2}, c_{3}, c_{4}\right]^{T}$? Explain why or why not.
3. What is a basis of the null space of

$$
\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] ?
$$

(a) $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 0 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right]$
(Continue your answer on the back of the page, if needed.)
4. What is true about the matrix

$$
A=\left[\begin{array}{ccc}
0 & 3 & 2 \\
2 & -7 & 4 \\
4 & -8 & 12 \\
5 & -4 & 19
\end{array}\right] ?
$$

(a) The dimension of its column space is 1 .
(b) The rank of the transpose of A equals the nullity of the transpose of A.
(c) The rank of A equals the nullity of A.
(d) The nullspace of A has dimension 2
(e) The column space is \mathbb{R}^{4}.
5. What is true about the linear system

$$
\begin{array}{r}
x+2 z=3 \\
y+2 z=3 \\
x+y+4 z=5
\end{array}
$$

(a) There is no solution.
(b) There is exactly one solution and $x=1$.
(c) There is exactly one solution and $y=2$.
(d) There are infinitely many solutions and $x=3-2 z$.
(e) There are infinitely many solutions and $z=0$.
(Continue your answer on the back of the page, if needed.)
6. Which of the following sets of vectors span \mathbb{R}^{3} ?
(a) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right]$
(e) $\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}5 \\ -4 \\ -6\end{array}\right]$
(Continue your answer on the back of the page, if needed.)
7. Which of the following sets of vectors is not a basis of

$$
\operatorname{span}\left(\left[\begin{array}{c}
2 \\
0 \\
1 \\
10
\end{array}\right],\left[\begin{array}{c}
3 \\
0 \\
1 \\
14
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
3 \\
14
\end{array}\right]\right) ?
$$

(a) $\left[\begin{array}{c}2 \\ 0 \\ 1 \\ 10\end{array}\right],\left[\begin{array}{c}3 \\ 0 \\ 1 \\ 14\end{array}\right]$
(b) $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 2\end{array}\right]$
(c) $\left[\begin{array}{c}2 \\ 0 \\ 1 \\ 10\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ 3 \\ 14\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 3\end{array}\right]$
(e) $\left[\begin{array}{c}3 \\ 0 \\ 1 \\ 14\end{array}\right],\left[\begin{array}{c}2 \\ 0 \\ 3 \\ 14\end{array}\right]$
(Continue your answer on the back of the page, if needed.)
8. Which is a subspace of \mathbb{R}^{2} ?
(a) $\left\{\begin{array}{l}x \\ y\end{array}\right]$ such that $\left.x^{2}=0\right\}$
(b) $\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$ such that $\left.2 x+3 y=5\right\}$
(c) $\left.\left\{\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
(d) $\left\{\left[\begin{array}{l}a+1 \\ b+c\end{array}\right]\right.$ such that $\left.a, b, c \in \mathbb{R}\right\}$
(e) $\left\{\left[\begin{array}{l}x \\ y\end{array}\right]\right.$ such that $\left.x^{2}=y^{2}\right\}$
(Continue your answer on the back of the page, if needed.)
9. What is

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 5 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] ?
$$

(a) $\left[\begin{array}{c}-1 \\ -2 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{ccc}2 & -3 & 0 \\ -1 & -5 & 0\end{array}\right]$
(c) $\left[\begin{array}{cc}2 & -3 \\ -1 & -5\end{array}\right]$
(d) $\left[\begin{array}{l}-1 \\ -6\end{array}\right]$
(e) It is not defined.
(Continue your answer on the back of the page, if needed.)
10. Which of the following is not a basis of the vector space of polynomials of degree at most 2 ?
(a) $1, x+1, x^{2}+x+1$
(b) $x+2, x^{2}-x+1, x^{2}+x+5$
(c) $1, x, x^{2}$
(d) $x+1, x+2, x^{2}$
(e) $x^{2}+x+1, x^{2}-2 x+1, x^{2}-2$
(Continue your answer on the back of the page, if needed.)

