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This will be a semester-long course, held over Zoom, time TBA. I’ve tried to break it
down into discrete talks that should take an hour each. Get in touch if you’d like to give one
of the talks; I’ll give the rest. If you’re a grad student, you should strongly consider at least
one talk – that’s at least one thing from the class that you’re guaranteed to actually learn.

Resources. We will be following [BR] for the bulk of the course. Among other things,
this book surveys most of the structured categories of spectra now in use.

I first learned this from part III of Adams’s “blue book” [Ada]. (Note that parts I and
II are more advanced and should be skipped at first.) At the time this was written, Adams
did not have access to any structured category of spectra, and you can see the consequences
in his discussion of the smash product in chapter 4. But the rest is maybe a testament to
what you can do with just the stable homotopy category.

For stable ∞-categories, see chapter 1 of [Lur]. For some applications of monoidal ∞-
category technology to spectra, see chapter 7 of [Lur].

For the various structured categories of spectra, see [EKMM], [LMS], [HSS], [MMSS],
and [Sch]. I think [Sch] is the only one of these appropriate to someone learning this for the
first time (and a few of you have already spent some time with it).

1. Introduction. What are spectra meant to do? They generalize four ideas simultane-
ously. First, they contain the category of “spaces up to arbitrarily high suspension”, so
allow the isolation of properties of spaces that are “stable” under suspension. Second,
the Brown representability theorem states that every cohomology theory is represented
by a spectrum. Third, a spectrum can be thought of as an infinite loop space with a
choice of infinitely many deloopings, and there are many geometrically interesting in-
finite loop spaces. Finally, the category of spectra Sp is something like the category of
chain complexes over a ring Ch(R), and is really a universal example of a “category like
Ch(R)”. Besides the applications to geometric topology this machinery was originally
developed for, in recent years there has been heavy interest in doing algebraic geome-
try with highly structured ring spectra, and in working with other “stable homotopy
categories” like Sp. (I will give this talk.)

2. Review of unstable homotopy theory. Generalized homology and cohomology
theories; cofiber and fiber sequences of spaces, and the long exact sequences they
induce on homology or homotopy; the Freudenthal suspension theorem; the definition
of stable homotopy groups; and whatever else people want to review. Reference: [BR,
1.1], [Ada, III.1].
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3. The homotopy category of sequential spectra, and some examples. Suspen-
sion spectra of spaces, Ω-spectra, Eilenberg-MacLane spectra, and K-theory. Refer-
ence: [BR, 1.2], [Ada, III.2].

4. Review of model categories. Constructions: the homotopy category, Quillen ad-
junctions and derived functors, Quillen equivalences. Some examples: model categories
of spaces, simplicial sets, and chain complexes over a ring. Reference: [DS].

5. The levelwise model structure on sequential spectra. Reference: [BR, 2.1].

6. Homotopy groups of spectra. Define them and give some examples. Reference:
[BR, 2.2].

7. The stable model structure on sequential spectra. This is defined by inverting
π∗-isomorphisms, i.e., forcing homotopy groups to detect weak equivalences. Check
that it recovers the homotopy category we originally defined. Reference: [BR, 2.3].

8. Suspensions and loops of spectra. Define them and show that they are inverse to
each other on the homotopy category. Since any ΣX is a cogroup object and ΩX is a
group object in Ho(Sp), for any X, it follows that any set of homotopy classes of maps
[X, Y ]∗ is in fact an abelian group. Reference: [BR, 3.1,3.2].

9. Fiber and cofiber sequences of spectra. The big point here is that fiber sequences
are cofiber sequences, and can be extended both backward and forward. Thus, one can
define long exact sequences of groups of homotopy classes of maps in multiple equivalent
ways. Reference: [BR, 3.3-3.6], though you do not need to go into their level of detail.
(In particular, the fact that fiber sequences can be extended backwards, and cofiber
sequences forwards, in any model category is a generalization of a fact we’ve already
discussed about spaces, and I don’t think we need to give the fully general argument.)

10. Other properties of spectra. Products and wedge sums, connective covers and trun-
cations, the Σ∞-Ω∞ adjunction. and Brown representability. Optionally, talk about
the Milnor exact sequence describing π∗ of an inverse limit in [Ada, III.8]. Reference:
[Ada, III.3].

11. The stable homotopy category as a triangulated category. Define triangulated
categories, and show how this definition is a natural consequence of the properties
we’ve examined. Likewise talk about the other major example: homotopy categories
of chain complexes over a ring. Reference: [BR, 4.1-4.2], specialized to these cases.

12. The Atiyah-Hirzebruch spectral sequence. This should start with a review of
spectral sequences in general. As an application, compute K∗(CP n). Reference: [Ada,
III.7]; for spectral sequences see [MT, ch. 7] or [McC].

13. The smash product. Construct the smash product on sequential spectra, as in [BR,
6.2], [Ada, III.4]. This only has good properties (only defines a symmetric monoidal
structure) on the stable homotopy category. In as much detail as you’d like, discuss the
concept of a monoidal model category, and the existence of solutions ot this problem
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such as the model category of symmetric spectra. References: [BR, 5.2, 6.1-6.2], [Ada,
III.4].

14. Structured model categories of spectra, or the stable ∞-category of spectra.
We can cover one or both of these depending on your interest. Sequential spectra
are bad if you care about anything like a symmetric monoidal structure, or spectra
with group actions. Various solutions to these problems were constructed from the
80s to the 2000s, and it’s at least fairly simple to talk about symmetric spectra and
orthogonal spectra. The stable ∞-category perspective is even more modern, and has
the advantage of solving all problems at once as long as the problems are framed ∞-
categorically. Unfortunately, this framing can take a fair bit of work. (I’ll give this
talk, unless someone else is really gung-ho about it.) References: [BR, 5.2-5.3], [Lur,
ch. 1].

15. Applications of the smash product. Spanier-Whitehead duality, homology, and
the internal function spectrum. Reference: [BR, 6.3, 6.4.2, 6.5].

16. Ring spectra. Define these at the level of the homotopy category, and note that
the homotopy groups of a ring spectrum are a graded ring. The homotopy groups
of a homotopy commutative ring spectrum are graded-commutative, i.e., odd-degree
elements anti-commute: why? Some example: the sphere, the Eilenberg-MacLane
spectrum HR for a ring R, and KO and KU . If E is a ring spectrum, then E∗(X) is a
ring for any space X. This uses the fact that X has a diagonal map, which translates
to a coalgebra structure on its suspension spectrum. Reference: [BR, 6.6].

17. Thom spaces, Thom spectra, and cobordism theories. Define the Thom spec-
trum of a vector bundle, and use this to construct the cobordism theory MO as a spec-
trum. Discuss cobordism theories with extra structure, notably complex and framed
cobordism. Show that framed cobordism is equivalent to the sphere spectrum (the
Pontryagin-Thom construction). Reference: [May2, ch. 25].

18. The Steenrod algebra and its dual. Without necessarily proving everything, let’s
talk about the properties of the Steenrod algebra, and its spectral definition A =
HF∗pHFp. Using spectra, prove that A is a cocommutative (but not commutative)
Hopf algebra, and that for any X, HF∗pX is a module over this Hopf algebra. Milnor
realized that it was easier to work with the dual Steenrod algebra A∗ = (HFp)∗HFp.
This is a commutative (but not cocommutative) Hopf algebra, which Milnor showed is
free as a graded-commutative Fp-algebra, and for any X, (HFp)∗X is a comodule over
it. Reference: [BR, 2.5].

19. The Adams spectral sequence. Construct it, interpret its E2 page as Ext of A-
modules and A∗-comodules, and show that it converges to the p-complete stable homo-
topy groups of any finite type CW-complex X. This would be a good time to review
any necessary homological algebra, e.g. what Ext is. Reference: [BR, 2.6].

20. Basic computations with the Adams spectral sequence. We should be able
to compute the homotopy groups of MO, bu, and bo using the spectral sequence and
change-of-rings theorems. Reference: [Rav, 3.1].
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21. Computing homotopy groups of spheres with the Adams spectral sequence.
Let’s focus on the prime 2 and the range up to about the 14 stem (the first nontrivial
differential). The hardest part is to get the E2 term, and there are a few ways to do
it: the May spectral sequence obtained by filtering the dual Steenrod algebra [Rav,
3.2], directly constructing a minimal A-module resolution in the desired range [Bru],
or using a computer program. Pick your favorite and show us. Talk about some of the
multiplicative structure, and the Hopf invariant 1 elements (those appearing on the
1-line).

22. The generalized Adams spectral sequence. Define the E-nilpotent completion of
a spectrum, X∧E and construct the E-based Adams spectral sequence computing π∗X

∧
E.

Reference: [Rav, 3.3].

23. Operads. Define operads for spaces and show how they can also be made to act on
spectra in a monoidal model category. Focus on the examples of En, A∞ (also known
as E1), and E∞. Reference: [May1], though you may want to look for newer ones.

24. E∞ ring spectra. Lots of examples (every ring spectrum we’ve looked at so far!).
One easy way to construct them: as strict commutative monoids in symmetric spectra.
Also note that the suspension spectrum of a space is an E∞-coalgebra, so that for any
ring spectrum R, F (Σ∞+X,R) is an E∞-algebra.

25. Power operations. The main point is that any E∞-ring spectrum R has external
power operations R∗(X) → R∗(X×dΣd

), and internal ones R∗(X) → R∗(X) given by
composing with the diagonal map of X. Let’s talk about as many examples we can:
Steenrod operations on ordinary cohomology, Adams operations on K-theory, and
power operations on cobordism following Quillen [Qui].

References

[Ada] Adams, J. F. Stable Homotopy and Generalised Homology. Chicago Lectures in
Mathematics Series (1974).

[BR] Barnes, D. and C. Rotzheim. Foundations of Stable Homotopy Theory. Cambridge
Studies in Advanced Mathematics 185 (2020).

[Bru] Bruner, R. B. “An Adams Spectral Sequence Primer”. Available online at http:

//www.rrb.wayne.edu/papers/adams.pdf (2009).

[DS] Dwyer, Dwyer, W. G., and J. Spalinski. “Homotopy theories and model categories.”
In Handbook of algebraic topology (1995): 73–126.

[EKMM] Elmendorf, A. D., I. Kriz, M. Mandell, and J. P. May. Rings, modules, and alge-
bras in stable homotopy theory. American Mathematical Society Surveys and Mono-
graphs (1995).

4

http://www.rrb.wayne.edu/papers/adams.pdf
http://www.rrb.wayne.edu/papers/adams.pdf


[HSS] Hovey, M., B. Shipley, and J. Smith. “Symmetric spectra.” Journal of the American
Mathematical Society 13.1 (2000): 149–208.

[LMS] Lewis, G., J. P. May, and M. Steinberger. Equivariant stable homotopy theory.
Lecture Notes in Mathematics 1213 (1986).

[Lur] Lurie, J. Higher Algebra. Unpublished, available online at http://people.math.

harvard.edu/~lurie/papers/HA.pdf.

[MMSS] Mandell, M. A., J. P. May, B. Shipley, and J. Smith. “Model categories of diagram
spectra.” Proceedings of the London Mathematical Society 82.2 (2001): 441–512.

[May1] May, J. P. The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics
271 (1972).

[May2] May, J. P. A Concise Course in Algebraic Topology. Chicago Lectures in Mathe-
matics Series (1999).

[McC] McCleary, J. A User’s Guide to Spectral Sequences. Cambridge Studies in Advanced
Mathematics 58 (1985).

[MT] Mosher, R. E. and M. C. Tangora. Cohomology Operations and Applications in
Homotopy Theory.

[Qui] Quillen, D. “Elementary proofs of some results in cobordism theory using Steenrod
operations.” Advances in Mathematics 7: 29–56 (1971).

[Rav] Ravenel, D. C. Complex Cobordism and Stable Homotopy Groups of Spheres. (2003).

[Sch] Schwede, S. An untitled book project about symmetric spectra. Unpublished, avail-
able online at http://proxy.math.uni-bonn.de/people/schwede/SymSpec.pdf.

5

http://people.math.harvard.edu/~lurie/papers/HA.pdf
http://people.math.harvard.edu/~lurie/papers/HA.pdf
http://proxy.math.uni-bonn.de/people/schwede/SymSpec.pdf

