
Lecture 1: Introduction and the Steenrod algebra

September 29, 2014

This class concerns the Sullivan conjecture, and more generally following basic setup: given a finite
CW-complex X and a finite p-group π acting on X, it’s possible to describe the fixed point set Xπ in
terms of homotopy theory. This is surprising because Xπ isn’t even homotopy invariant! For instance, if
Z is acting trivially on a point, the fixed point set is the whole point. . . but replacing the point with the
homotopy-equivalent space R, with Z acting by translation x 7→ x+ 1, the fixed point set is empty.

The basic tools we’ll use are modules and algebras over the Steenrod algebra A, and in particular,
homological algebra of unstable modules. A first goal is a theorem of Carlsson that says that H̃∗(RP∞) is
injective as an A-module. Why should this be true? We’ll also use some basic unstable homotopy theory, in
particular the Bousfield-Kan “unstable Adams spectral sequence.”

Example 1. When X is a sphere Sn, the basic setup is called ‘Smith theory,’ after P. A. Smith, one of a
number of homotopy-theoretic Smiths. Let π = Z/2 = {1, τ}. Writing

Sn = {(x0, . . . , xn) ∈ Rn+1 : x2
0 + · · ·+ x2

n = 1},

we can have Z/2 act by
τ(x0, . . . , xn) = (x0, . . . , xi,−xi+1, . . . ,−xn).

The fixed points of this action are {(x0, . . . , xi, 0, . . . , 0) : x2
0 + · · · + x2

i = 1} = Si. So we can get any
lower-dimensional sphere as a fixed point space of such an action. Smith theory says that, up to homology,
this is all we see.

Theorem 2. If X is a finite CW-complex with H∗(X;Z/p) ∼= H∗(S
2n+1;Z/p), and the cyclic group Cp acts

on X, then H∗(X
Cp ;Z/p) ∼= H∗(S

i;Z/p) for some i, where i is odd if p is odd.

Note that the input and output of this theorem are both in terms of homology. This will turn out to
happen a lot.

Cohomology and the Steenrod algebra

If X is a space and k is a field, then by the Künneth formula, H∗(X; k) is a graded commutative ring.
Graded commutative doesn’t mean commutative – it means that for homogeneous elements x and y of
degrees |x| and |y|,

xy = (−1)|x||y|yx.

In particular, if |x| is odd, x2 = −x2, so in characteristic not equal to two, everything squares to 0.
In characteristic 0, this ring structure is all the natural structure on cohomology. But in characteristic

p, there’s more!
Say k = F2. The Steenrod squares are natural abelian group homomorphisms

Sqi : Hn(X;F2)→ Hn+i(X;F2).

They satisfy a few axioms.

1. Sq0(x) = x. (Note for experts: for fields larger than F2, this map should actually be the Frobenius.)

2. Sqn(x) = x2 if |x| = n, and Sqi(x) = 0 if i > |x| (the unstable condition).
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3. Sqn(xy) =
∑
i+j=n Sqi(x) Sqj(y) (the Cartan formula).

4. Sqi Sqj =
∑
t

(
j−t−1
i−2t

)
Sqi+j−t Sqt (the Adem relations).

The binomial coefficient appearing in the Adem relations is a mod 2 binomial coefficient, and can be defined
even for n ≤ 0 by the power series identity

(1 + x)n =
∑
i≥0

(
n

i

)
xi.

In particular,
(
n
i

)
= 0 for i < 0, so the sum in the Adem relations only uses 0 ≤ t ≤

⌊
i
2

⌋
.

We’ll construct these later. They’re actually totally specified by the above axioms (and naturality), so
we can play around with them right now.

Example 3. For X = RP∞, then H∗(RP∞;F2) ∼= F2[x] with |x| = 1. We must have Sq0(x) = x and
Sq1(x) = x2, and the higher squares must vanish by the unstable condition.

This actually tells us how the squares act on powers of x, too, but to prove this, it’s worth rewriting the
Cartan formula. Define Sq(y) =

∑
Sqi(y) – then the Cartan formula says that Sq is a ring homomorphism.

Returning to the case of RP∞, we have Sq(x) = x+ x2, so

Sq(xn) = (Sqx)n(x+ x2)n = xn(1 + x)n =
∑(

n

i

)
xn+i.

Thus,

Sqi(xn) =

(
n

i

)
xn+i.

In particular,

Sq1(xn) = nxn+1 =

{
0 n even

xn+1 n odd.

We can start to draw this in a diagram like the following. Here, each dot represents a cohomology class,
the straight lines are Sq1s, the curved lines Sq2s, and the long, square-shaped line a Sq4.

• • • • • • • • •
1 x x2 x3 x4 x5 x6 x7 x8

Why haven’t we drawn Sq3? Because of the Adem relations:

Sq3 =
∑(

1− t
1− 2t

)
Sq3−t Sqt = Sq3 .

Here’s another one, for practice:

Sq2 Sq4 =
∑(

3− t
2− 2t

)
Sq6−t Sqt = Sq6 + Sq5 Sq1 = Sq6 + Sq1 Sq4 Sq1 .

Thus, Sq6 = Sq2 Sq4 + Sq1 Sq4 Sq1. This illustrates an important point: we can write any square as a sum

of products of Sq2i

for i ≥ 0.
The Steenrod squares are stable under the unreduced suspension X 7→ ΣX. That is, for the natural

isomorphism
σ : H̃n(X)

∼→ H̃n+1(ΣX),

we have σ Sqn(x) = Sqn(σx).
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Example 4. Let h : S3 → S2 be the Hopf map. The cone on h is S2 ∪h e4 ' CP 2. This has cohomology
H∗CP 2 = F2[y]/(y3), with |y| = 2. Thus, Sq2 y = y2 6= 0. Now, if X = ΣnCP 2, we no longer have that
σn(y)2 = σn(y2), for obvious degree reasons. But we do have Sq2(σny) = σn(Sq2 y) = σn(y2) 6= 0. This is a
nontrivial square in

Σn(S2 ∪h e4) = Sn+2 ∪Σnh e
n+4.

This means that this cone can’t split up as a wedge, which means that Σnh is never nullhomotopic. We’ve
used the Steenrod squares to find a stable homotopy element.

Proof of stability of the squares. There’s a quotient map S1 ×X → ΣX inducing a map

H∗ΣX → H∗S1 ⊗H∗X = H∗X ⊕ e1H
∗−1X,

and H∗ΣX is mapped isomorphically to the summand e1H
∗−1X. We can use the Cartan formula to calculate

squares here – since Sqi e1 = 0 for i > 0, they correspond precisely to the squares in H∗X.
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