
Lecture 10: The T -functor of algebras

October 20, 2014

We’re talking about the Lannes T -functor, TV : U → U , with

HomU (TVM,N) ∼= HomU (M,H∗BV ⊗N)

Example 1. Let M = F (n), the free unstable module on a single generator in ∈ F (n)n. For simplicity, take
p = 2 and V = F2, so H ∗BV = H∗RP∞ ∼= F2[u] with u in degree 2. The adjunction formula above is

HomU (TV F (n), N) ∼= HomU (F (n),F2[u]⊗N) ∼= (F2[u]⊗N)n =

n⊕
i=0

Nn−i.

By the Yoneda lemma, we get TV F (n) =
⊕n

i=0 F (n− i).
Let’s suppose we know that TV U(M) ∼= UTV (M), where U : U → K is the left adjoint to the forgetful

functor (in fact,

U(M) = Sym(M)/(Sq|x|(x) = x2).)

By a theorem of Serre, H∗K(Z/2, n) ∼= U(F (n)). Thus,

TH∗K(Z/2, n) = U

(
n⊕
i=0

F (n− i)

)
=

n⊗
i=0

H∗K(F2, n− i).

What’s map(RP∞,K(Z/2, n))? Since this is a commutative topological group, it’s a product of Eilenberg-
Mac Lane spaces. We have

πi map(RP∞,K(Z/2, n)) = [RP∞,K(Z/2, n− i)] = Hn−i(RP∞,Z/2) =

{
Z/2 0 ≤ i ≤ n
0 i > n.

Thus,

map(RP∞,K(Z/2, n)) =

n∏
i=0

K(Z/2, n− i),

with cohomology
H∗map(RP∞,K(Z/2, n)) ∼= TH∗K(Z/2, n).

Let’s get back to technical stuff, including establishing the claim that TV commutes with U . Given
M ∈ U , 1 : TVM → TVM has an adjoint map

εM : M → H∗BV ⊗ TVM.

There’s then a map

M⊗N εM⊗εM→ H∗BV ⊗TVM⊗H∗BV ⊗TVN
swap→ H∗BV ⊗H∗BV ⊗TVM⊗TVN

m⊗1→ H∗BV ⊗TVM⊗TVN.

This is adjoint to a map
TV (M ⊗N)→ TVM ⊗ TVN.

Theorem 2. This map is an isomorphism.
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Proof sketch. Let T = TFp ; since TV is a composition of copies of T , we can assume TV = T . Since T is
exact and preserves sums, we can also assume M = F (p) and N = F (q). The proof is then done by an
elaborate multiple induction on p, q, and the internal degree of an element of the tensor product. This goes
by looking at the exact sequences

0→ F (p)⊗ ΦF (q)
1⊗λ→ F (p)⊗ F (q)→ F (p)⊗ ΣΩF (q)→ 0

and
0→ ΦF (p)⊗ ΦF (q)

λ⊗1→ F (p)⊗ ΦF (q)→ ΣΩF (p)⊗ ΦF (q)→ 0.

We note that ΩF (p) = F (p− 1), allowing for the induction, and that T is exact and commutes with Σ and
Φ, so we can apply it to the above exact sequences to start the proof.

Remark 3. That T commutes with Φ implies that

TH∗CP∞ = TΦH∗RP∞ = ΦTH∗RP∞ = H∗CP∞ ⊗H∗K(Z/2, 0).

Since TV commutes with tensor products, TVK ∈ K if K ∈ K.

Theorem 4. TV is also left adjoint to H∗BV ⊗ · in K; that is,

HomK(TVK,L) ∼= HomK(K,H∗BV ⊗ L).

(Dylan: a high-falutin reason for this is that TV commutes with sifted colimits, which agree in K and U
by monadicity, and with tensor products, which are coproducts in K. So it commutes with all colimits in K
and we can apply the adjoint functor theorem.

PG: the below is an unpacking of this reason.)

Definition 5. A reflexive coequalizer diagram is a diagram

C1

d0 //

d1

//
C0

s0oo

where d0s0 = d1s0 = 1.

Proposition 6. Let

K1

d0 //

d1

//
K0

s0oo

be a reflexive coequalizer diagram in K. Then the coequalizer in K is isomorphic to the coequalizer in U .

Proof. The coequalizer in U is K0/∂K1 where ∂ = d1 − d0. If a ∈ K0, then

a∂(y) = a(d1y − d0y) = d1(s0(a)y)− d0(s0(a)y) ∈ ∂K1,

so ∂K1 is an ideal of K0, and thus the coequalizer is canonically an algebra.

Lemma 7. If K ∈ K, there’s a reflexive coequalizer diagram

U(F1)

d0 //

d1

//
U(F0)

s0oo //K

where F0 and F1 are projective in U .
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Proof. Recall the chain of adjunctions

K
U

� U
F

� GradedVectorSpaces.

Let G = UF . Then if K ∈ K, we have maps ε : K → G(K) of vector spaces and d0 : G(K)→ K of algebras
such that d0ε = K. We have a coequalizer diagram

G2K
Gd0 //

d0G=d1

// G(K)
d0

// K,

and ε induces the inverse of d0 : G(K)/∂G2(K) → K. Thus, Gε = s0 completes the reflexive coequalizer
diagram, and we can take F0 = F (K), F1 = FG(K). (In fact, the coequalizer diagram extends to a simplicial
object in an obvious way, and ε is a simplicial contraction of this simplicial object.)

Lemma 8. The functor K → K given by L 7→ H∗BV ⊗ L has a left adjoint T̃V on K.

Proof. Define T̃V (U(M)) = UTV (M). Since every K is a reflexive coequalizer of objects U(M), and since

reflexive coequalizers are preserved by all functors, this defines T̃V for all K. TO be precise,

T̃V (K) = π0T̃V (G0K) := TVGK/∂TG
2K.

We have

HomK(T̃V (U(M)), L) ∼= HomK(U(TVM), L) ∼= HomU (TVM,L) ∼= HomU (M,H∗BV⊗L) ∼= HomK(U(M), H∗BV⊗L).

Thus, this follows for all K, for the same reason that reflexive coequalizers are absolute.

To prove that TV ∼= T̃V , we now just have to prove:

Lemma 9.
T̃V U(M) = UTV (M) ∼= TV U(M).

Proof. There are maps in U , M → U(M) and TVM → U(TVM). The first of these gives a map TVM →
TV U(M) in U , and thus U(TVM)→ UTV U(M)→ TV U(M) in K. The second gives

M → H∗BV ⊗ TVM → H∗BV ⊗ U(TVM)

in U , and thus
U(M)→ H∗BV ⊗ U(TVM)

in U (forgetting again). Taking the adjunction in U gives

TV U(M)→ U(TVM)

and then one shows that these two maps are inverse in U , and thus in K.
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