Lecture 10: The T-functor of algebras

October 20, 2014

We're talking about the Lannes T-functor, Ty : U — U, with
Homy, (Ty M, N) =2 Homy (M, H*BV ® N)

Ezample 1. Let M = F(n), the free unstable module on a single generator i,, € F(n)™. For simplicity, take
p=2and V =Fy, so H+« BV = H*RP> = Fy[u] with u in degree 2. The adjunction formula above is

Homy (Ty F(n), V) = Homy(F(n), Falu] & N) = (Fafu] & N)" = @D N"~".

By the Yoneda lemma, we get Ty F(n) = @._, F(n — i).
Let’s suppose we know that Ty U (M) = UTy (M), where U : U — K is the left adjoint to the forgetful
functor (in fact,

U(M) = Sym(M)/(54"! (x) = 2).
By a theorem of Serre, H*K(Z/2,n) 2 U(F(n)). Thus,

3

TH*K(Z/2,n) =U ( F(n— i)) = éH*K(]FQ,n — ).

=0 =0

What’s map(RP>, K(Z/2,n))? Since this is a commutative topological group, it’s a product of Eilenberg-
Mac Lane spaces. We have

Z)2 0<i<n

7 map(RP™, K(Z/2,n)) = [RP®, K(Z/2,n — i)] = H"{(RP® 7/2) = {0 .

Thus,

map(RP>, K (Z/2,n)) = [ [ K(Z/2,n — i),
=0
with cohomology
H*map(RP>, K(Z/2,n)) = TH*K(Z/2,n).

Let’s get back to technical stuff, including establishing the claim that 7Ty commutes with U. Given
MeU,1:TyM — Ty M has an adjoint map

e : M — H*BV @ Ty M.
There’s then a map
MeN V“EM By Ty Mo H*BV Ty N "3 H*BV@H*BV Ty MTy N "™S' H* BV 9Ty M@Ty N.

This is adjoint to a map

Theorem 2. This map is an isomorphism.



Proof sketch. Let T = Tk, ; since Ty is a composition of copies of T', we can assume Ty = T. Since T' is
exact and preserves sums, we can also assume M = F(p) and N = F(q). The proof is then done by an
elaborate multiple induction on p, ¢, and the internal degree of an element of the tensor product. This goes
by looking at the exact sequences

0— F(p) ® dF(q) 2 F(p) ® F(q) — F(p) ® SQF(q) — 0

and
0— OF(p) ® DF(q) "3' F(p) ® BF(q) — SQF(p) @ PF(q) — 0.

We note that QF(p) = F(p — 1), allowing for the induction, and that T is exact and commutes with ¥ and
®, so we can apply it to the above exact sequences to start the proof. O

Remark 3. That T' commutes with ® implies that
TH*CP*® =TO®H'RP*® = dTH'RP>* = H*CP* ® H*K(Z/2,0).
Since Ty commutes with tensor products, Ty K € K if K € K.

Theorem 4. Ty is also left adjoint to H*BV ® - in IKC; that is,
Homy (Ty K, L) 2 Homg (K, H*BV ® L).

(Dylan: a high-falutin reason for this is that Ty commutes with sifted colimits, which agree in K and U
by monadicity, and with tensor products, which are coproducts in . So it commutes with all colimits in /C
and we can apply the adjoint functor theorem.

PG: the below is an unpacking of this reason.)

Definition 5. A reflexive coequalizer diagram is a diagram

do
S0
Cl <;C()

—_—
di

where dosg = d1sg = 1.

Proposition 6. Let

do
_f0.
50

Kl%KO
 —
dy

be a reflexive coequalizer diagram in IC. Then the coequalizer in IC is isomorphic to the coequalizer in U.

Proof. The coequalizer in U is Ky/OK; where 0 = dy — dy. If a € K, then
ad(y) = a(dry — doy) = di(so(a)y) — do(so(a)y) € 0K,
so 0K, is an ideal of Ky, and thus the coequalizer is canonically an algebra. O
Lemma 7. If K € K, there’s a reflexive coequalizer diagram
do
U(F)<"—U(F)——K

—_—
d1

where Fy and Fy are projective in U.



Proof. Recall the chain of adjunctions

U F
K = U = GradedVectorSpaces.

Let G =UF. Then if K € K, we have maps € : K — G(K) of vector spaces and do : G(K) — K of algebras
such that dge = K. We have a coequalizer diagram

Gdo
2
GK —__G(K) — K,
doG=d,

and e induces the inverse of dg : G(K)/0G?(K) — K. Thus, Ge = 5o completes the reflexive coequalizer
diagram, and we can take Fy = F(K), F; = FG(K). (In fact, the coequalizer diagram extends to a simplicial
object in an obvious way, and € is a simplicial contraction of this simplicial object.) O

Lemma 8. The functor K — K given by L — H*BV ® L has a left adjoint TV on K.

Proof. Define Ty (U(M)) = UTy (M). Since every K is a reflexive coequalizer of objects U(M), and since
reflexive coequalizers are preserved by all functors, this defines Ty for all K. TO be precise,

Ty (K) = noTy (GoK) := Ty GK /OTG*K.
We have
Hom;c(fV(U(M))7 L) 2 Homg (U(Ty M), L) = Homy (Ty M, L) = Homy (M, H* BV®L) = Homy (U(M), H*BVQL).
Thus, this follows for all K, for the same reason that reflexive coequalizers are absolute. O

To prove that Ty = fv, we now just have to prove:

Lemma 9. _
TVUM) =UTy (M) = TyU(M).

Proof. There are maps in U, M — U(M) and Ty M — U(TyM). The first of these gives a map Ty M —
TyU(M) in U, and thus U(Ty M) — UTyU(M) — TyU(M) in K. The second gives

M — H*BV @ Ty M — H*BV @ U(Ty M)

in U, and thus
UM)— H*BV U(TyM)

in U (forgetting again). Taking the adjunction in U gives
TvUM) = U(Tv M)

and then one shows that these two maps are inverse in i, and thus in K. O



