Lecture 10: The T-functor of algebras

October 20, 2014

We're talking about the Lannes T-functor, $T_{V}: \mathcal{U} \rightarrow \mathcal{U}$, with

$$
\operatorname{Hom}_{\mathcal{U}}\left(T_{V} M, N\right) \cong \operatorname{Hom}_{\mathcal{U}}\left(M, H^{*} B V \otimes N\right)
$$

Example 1. Let $M=F(n)$, the free unstable module on a single generator $i_{n} \in F(n)^{n}$. For simplicity, take $p=2$ and $V=\mathbb{F}_{2}$, so $H * B V=H^{*} \mathbb{R} P^{\infty} \cong \mathbb{F}_{2}[u]$ with u in degree 2 . The adjunction formula above is

$$
\operatorname{Hom}_{\mathcal{U}}\left(T_{V} F(n), N\right) \cong \operatorname{Hom}_{\mathcal{U}}\left(F(n), \mathbb{F}_{2}[u] \otimes N\right) \cong\left(\mathbb{F}_{2}[u] \otimes N\right)^{n}=\bigoplus_{i=0}^{n} N^{n-i}
$$

By the Yoneda lemma, we get $T_{V} F(n)=\bigoplus_{i=0}^{n} F(n-i)$.
Let's suppose we know that $T_{V} U(M) \cong U T_{V}(M)$, where $U: \mathcal{U} \rightarrow \mathcal{K}$ is the left adjoint to the forgetful functor (in fact,

$$
\left.U(M)=\operatorname{Sym}(M) /\left(\mathrm{Sq}^{|x|}(x)=x^{2}\right) .\right)
$$

By a theorem of Serre, $H^{*} K(\mathbb{Z} / 2, n) \cong U(F(n))$. Thus,

$$
T H^{*} K(\mathbb{Z} / 2, n)=U\left(\bigoplus_{i=0}^{n} F(n-i)\right)=\bigotimes_{i=0}^{n} H^{*} K\left(\mathbb{F}_{2}, n-i\right)
$$

What's $\operatorname{map}\left(\mathbb{R} P^{\infty}, K(\mathbb{Z} / 2, n)\right)$? Since this is a commutative topological group, it's a product of EilenbergMac Lane spaces. We have

$$
\pi_{i} \operatorname{map}\left(\mathbb{R} P^{\infty}, K(\mathbb{Z} / 2, n)\right)=\left[\mathbb{R} P^{\infty}, K(\mathbb{Z} / 2, n-i)\right]=H^{n-i}\left(\mathbb{R} P^{\infty}, \mathbb{Z} / 2\right)= \begin{cases}\mathbb{Z} / 2 & 0 \leq i \leq n \\ 0 & i>n\end{cases}
$$

Thus,

$$
\operatorname{map}\left(\mathbb{R} P^{\infty}, K(\mathbb{Z} / 2, n)\right)=\prod_{i=0}^{n} K(\mathbb{Z} / 2, n-i)
$$

with cohomology

$$
H^{*} \operatorname{map}\left(\mathbb{R} P^{\infty}, K(\mathbb{Z} / 2, n)\right) \cong T H^{*} K(\mathbb{Z} / 2, n)
$$

Let's get back to technical stuff, including establishing the claim that T_{V} commutes with U. Given $M \in \mathcal{U}, 1: T_{V} M \rightarrow T_{V} M$ has an adjoint map

$$
\epsilon_{M}: M \rightarrow H^{*} B V \otimes T_{V} M
$$

There's then a map
$M \otimes N^{\epsilon_{M} \otimes \epsilon_{M}} H^{*} B V \otimes T_{V} M \otimes H^{*} B V \otimes T_{V} N \xrightarrow{\text { swap }} H^{*} B V \otimes H^{*} B V \otimes T_{V} M \otimes T_{V} N \xrightarrow{m \otimes 1} H^{*} B V \otimes T_{V} M \otimes T_{V} N$.
This is adjoint to a map

$$
T_{V}(M \otimes N) \rightarrow T_{V} M \otimes T_{V} N
$$

Theorem 2. This map is an isomorphism.

Proof sketch. Let $T=T_{\mathbb{F}_{p}}$; since T_{V} is a composition of copies of T, we can assume $T_{V}=T$. Since T is exact and preserves sums, we can also assume $M=F(p)$ and $N=F(q)$. The proof is then done by an elaborate multiple induction on p, q, and the internal degree of an element of the tensor product. This goes by looking at the exact sequences

$$
0 \rightarrow F(p) \otimes \Phi F(q) \xrightarrow{1 \otimes \lambda} F(p) \otimes F(q) \rightarrow F(p) \otimes \Sigma \Omega F(q) \rightarrow 0
$$

and

$$
0 \rightarrow \Phi F(p) \otimes \Phi F(q) \xrightarrow{\lambda \otimes 1} F(p) \otimes \Phi F(q) \rightarrow \Sigma \Omega F(p) \otimes \Phi F(q) \rightarrow 0 .
$$

We note that $\Omega F(p)=F(p-1)$, allowing for the induction, and that T is exact and commutes with Σ and Φ, so we can apply it to the above exact sequences to start the proof.

Remark 3. That T commutes with Φ implies that

$$
T H^{*} \mathbb{C} P^{\infty}=T \Phi H^{*} \mathbb{R} P^{\infty}=\Phi T H^{*} \mathbb{R} P^{\infty}=H^{*} \mathbb{C} P^{\infty} \otimes H^{*} K(\mathbb{Z} / 2,0)
$$

Since T_{V} commutes with tensor products, $T_{V} K \in \mathcal{K}$ if $K \in \mathcal{K}$.
Theorem 4. T_{V} is also left adjoint to $H^{*} B V \otimes \cdot$ in \mathcal{K}; that is,

$$
\operatorname{Hom}_{\mathcal{K}}\left(T_{V} K, L\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(K, H^{*} B V \otimes L\right)
$$

(Dylan: a high-falutin reason for this is that T_{V} commutes with sifted colimits, which agree in \mathcal{K} and \mathcal{U} by monadicity, and with tensor products, which are coproducts in \mathcal{K}. So it commutes with all colimits in \mathcal{K} and we can apply the adjoint functor theorem.

PG: the below is an unpacking of this reason.)
Definition 5. A reflexive coequalizer diagram is a diagram

where $d_{0} s_{0}=d_{1} s_{0}=1$.
Proposition 6. Let

$$
K_{1} \xrightarrow[d_{1}]{\stackrel{d_{0}}{\stackrel{s_{0}}{\leftrightarrows}}} K_{0}
$$

be a reflexive coequalizer diagram in \mathcal{K}. Then the coequalizer in \mathcal{K} is isomorphic to the coequalizer in \mathcal{U}.
Proof. The coequalizer in \mathcal{U} is $K_{0} / \partial K_{1}$ where $\partial=d_{1}-d_{0}$. If $a \in K_{0}$, then

$$
a \partial(y)=a\left(d_{1} y-d_{0} y\right)=d_{1}\left(s_{0}(a) y\right)-d_{0}\left(s_{0}(a) y\right) \in \partial K_{1}
$$

so ∂K_{1} is an ideal of K_{0}, and thus the coequalizer is canonically an algebra.
Lemma 7. If $K \in \mathcal{K}$, there's a reflexive coequalizer diagram

$$
U\left(F_{1}\right) \underset{d_{1}}{\stackrel{d_{0}}{\stackrel{s_{0}}{s_{0}}}\langle } U\left(F_{0}\right) \longrightarrow K
$$

where F_{0} and F_{1} are projective in \mathcal{U}.

Proof. Recall the chain of adjunctions

$$
\mathcal{K} \stackrel{U}{\rightleftarrows} \mathcal{U} \stackrel{F}{\rightleftarrows} \text { GradedVectorSpaces. }
$$

Let $G=U F$. Then if $K \in \mathcal{K}$, we have maps $\epsilon: K \rightarrow G(K)$ of vector spaces and $d_{0}: G(K) \rightarrow K$ of algebras such that $d_{0} \epsilon=K$. We have a coequalizer diagram

$$
G^{2} K \xrightarrow[d_{0} G=d_{1}]{\xrightarrow{G d_{0}}} G(K) \xrightarrow[d_{0}]{ } K
$$

and ϵ induces the inverse of $d_{0}: G(K) / \partial G^{2}(K) \rightarrow K$. Thus, $G \epsilon=s_{0}$ completes the reflexive coequalizer diagram, and we can take $F_{0}=F(K), F_{1}=F G(K)$. (In fact, the coequalizer diagram extends to a simplicial object in an obvious way, and ϵ is a simplicial contraction of this simplicial object.)

Lemma 8. The functor $\mathcal{K} \rightarrow \mathcal{K}$ given by $L \mapsto H^{*} B V \otimes L$ has a left adjoint \widetilde{T}_{V} on \mathcal{K}.
Proof. Define $\widetilde{T}_{V}(U(M))=U T_{V}(M)$. Since every K is a reflexive coequalizer of objects $U(M)$, and since reflexive coequalizers are preserved by all functors, this defines \widetilde{T}_{V} for all K. TO be precise,

$$
\widetilde{T}_{V}(K)=\pi_{0} \widetilde{T}_{V}\left(G_{0} K\right):=T_{V} G K / \partial T G^{2} K
$$

We have
$\operatorname{Hom}_{\mathcal{K}}\left(\widetilde{T}_{V}(U(M)), L\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(U\left(T_{V} M\right), L\right) \cong \operatorname{Hom}_{\mathcal{U}}\left(T_{V} M, L\right) \cong \operatorname{Hom}_{\mathcal{U}}\left(M, H^{*} B V \otimes L\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(U(M), H^{*} B V \otimes L\right)$.
Thus, this follows for all K, for the same reason that reflexive coequalizers are absolute.
To prove that $T_{V} \cong \widetilde{T}_{V}$, we now just have to prove:

Lemma 9.

$$
\widetilde{T}_{V} U(M)=U T_{V}(M) \cong T_{V} U(M)
$$

Proof. There are maps in $\mathcal{U}, M \rightarrow U(M)$ and $T_{V} M \rightarrow U\left(T_{V} M\right)$. The first of these gives a map $T_{V} M \rightarrow$ $T_{V} U(M)$ in \mathcal{U}, and thus $U\left(T_{V} M\right) \rightarrow U T_{V} U(M) \rightarrow T_{V} U(M)$ in \mathcal{K}. The second gives

$$
M \rightarrow H^{*} B V \otimes T_{V} M \rightarrow H^{*} B V \otimes U\left(T_{V} M\right)
$$

in \mathcal{U}, and thus

$$
U(M) \rightarrow H^{*} B V \otimes U\left(T_{V} M\right)
$$

in \mathcal{U} (forgetting again). Taking the adjunction in \mathcal{U} gives

$$
T_{V} U(M) \rightarrow U\left(T_{V} M\right)
$$

and then one shows that these two maps are inverse in \mathcal{U}, and thus in \mathcal{K}.

