
Lecture 11: Cohomology of mapping spaces

October 22, 2014

Recall that we had this functor TV : K → K satisfying

HomK(TVK,L) ∼= HomK(K,H∗BV ⊗ L).

Example 1. If X and Y are good spaces, then

HomK(TVH
∗X,H∗Y ) ∼= HomK(H∗X,H∗BV ⊗H∗Y ).

Let Y = map(BV,X). Then evaluation

map(BV,X)×BV −→ X

(f, x) 7→ f(x)

induces
H∗X → H∗map(BV,X)⊗H∗BV

and thus, by adjunction,
TVH

∗X → H∗map(BV,X)

in K. This map is often an isomorphism, and we’re about to start exploring when it is. If you didn’t already
know, computing cohomology of mapping spaces is a tough business, so it’s nice that we’re able to do this.

Extended example: Maps between classifying spaces

This area was deeply explored by Wilkerson. Let G be a group and BG the classifying space, so that
ΩBG ' G. If G is discrete, this must satisfy π1BG ∼= G, πnBG = 0 for n ≥ 2. By covering space theory,
if X is a connected pointed CW-complex and G is discrete, then [X,BG]∗ ∼= HomGp(π1X,G). If we instead
look at unpointed maps, we get

[X,BG] ∼= HomGp(π1X,G)/conjugacy in G =: Rep(π1X,G).

In particular, we can prove

Theorem 2. If H and G are discrete, then the space of unpointed maps

map(BH,BG) =
∐

ρ∈Rep(H,G)

BC(ρ),

where the centralizer BC(ρ) ⊆ G is the subgroup of elements commuting with ρ(H).

Proof. Any homomorphism H → G extends to C(ρ) × H → G, and since B preserves products, we get
BC(ρ)×BH → BG, or ∐

ρ∈Rep(H,G)

BC(ρ)→ map(BH,BG).

By the above, we can see that this is an isomorphism on π0. Now fixing a basepoint ρ, we find that

[S1,map(BH,BG)]∗ ∼= [S1 ×BH,BG]/BH ,
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where the decoration at the end means that we’re looking at diagrams of the form

S1 ×BH // BG

∗ ×BH.

OO

Bρ

::

These maps are determined up to homotopy by their effects on π1, i. e., as elements of Hom(Z ×H,G)/ρ.
The ‘/ρ’ determines the effect of such a map on H, so we only have to look at the map Z→ G, which must
land in C(ρ). This ends the proof.

If H = Z, BH = S1. This shows that the free loop space of BG, the space map(S1, BG), is just∐
x∈G/conjBC(x).

Now suppose that G is a Lie group; in fact, let G = U(n). (Note U(1) = S1, and BS1 = CP∞.) The
maximal torus is a map

T = S1 × · · · × S1︸ ︷︷ ︸
n

→ U(n)

which on classifying spaces is
CP∞ × · · · × CP∞ → BU(n).

The symmetric group Σn acts on the left-hand side, and on cohomology,

H∗BU(n) ∼= H∗(CP∞,×n)Σn = Fp[x1, . . . , xn]Σn ∼= Fp[c1, . . . , cn].

where |xi| = 2 and ci are the universal Chern classes.
If H is discrete, then Rep(H,U(n)) is the set of n-dimensional complex representations of H. We still

have a map ∐
ρ∈Rep(H,U(n))

BC(ρ)→ map(BH,BU(n)).

But without covering space theory, there’s little hope for this map to be a weak equivalence.

Example 3. Let H = Cp ∼= Z/p. Rep(Cp, U(1)) is multiplication by ζi, 0 ≤ i ≤ p− 1, where ζ is a primitive
pth root of unity. That is, each i gives us a representation

{1, τ, . . . , τp−1} = Cp −→ U(1) = S1

ρi : τ 7→ ζi.

Since U(1) is abelian, C(ρi) = U(1) = S1. Thus, the above map is just

p−1∐
i=0

CP∞ → map(BZ/p,CP∞).

Suppose we knew that TH∗CP∞ = H∗map(BZ/p,CP∞). The left-hand side is then

U(F (0))⊗ U(Φ(F (1))) ∼= Fp[x]/(xp − x)⊗H∗CP∞.

But xp − x is a separable polynomial over Fp, all of whose roots are in Fp. Thus, we get

Fp[x]/(xp − x) ∼=
p−1∏
i=0

Fp via f(x) 7→ (f(0), f(1), . . . , f(p− 1)).

Thus,

H∗map(BZ/p,CP∞) ∼=

(
p−1∏
i=0

Fp

)
⊗H∗CP∞ ∼= H∗

(
p−1∐
i=0

CP∞
)
.
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Example 4. Again take H = Cp = Z/p, and now G = U(n). Every n-dimensional representation of Cp is
diagonalizable, and thus of the form

ρ(τ) =


ζi1 0 . . . 0

0 ζi2
...

...
. . . 0

0 . . . 0 ζin

 ,

where without loss of generality, i1 ≥ · · · ≥ in. Write (i1, . . . , in) = (j1, . . . , j1, j2, . . . , j2, . . . , jk) with
j1 > · · · > jk and there are sm copies of each jm. Then

C(ρ) = U(s1)× · · · × U(sk).

Thus, ∐
ρ∈Rep(Cp,U(n))

BC(ρ) =
∐
ρ

BU(s1)× · · · ×BU(sk).

If n = 2, there are just two cases: i1 = i2, or i1 > i2. So∐
ρ∈Rep(Cp,U(2))

BC(ρ) =
∐

p−1≥i1=i2≥0

BU(2) t
∐

p−1≥i1>i2≥0

BU(1)×BU(1).

What is TH∗BU(2)? Well, T is exact, so we can pull out the Σ2-action: TH∗BU(2) ∼= T (H∗(CP∞ ×
CP∞))Σ2 . T also commutes with tensor products, so this is

(TH∗CP∞ ⊗ TH∗CP∞)Σ2 ∼= [Fp[y1, y2, x1, x2]/(xpi − xi)]
Σ2 ,

where |yi| = 2, |xi| = 0, and the symmetric group action is the obvious thing, switching 1’s and 2’s. We can
now calculate that

TH∗BU(2) =
∏
i1=i2

Fp[y1, y2]Σ2 x
i1
1 x

i2
2 ×

∏
Fp[y1, y2]xi11 x

i2
2 .

The polynomials in the right-hand factor are not Σ2-invariant, but they correspond bijectively to the Σ2-
invariants, via

f(y1, y2)xi11 x
i2
2 7→ f(y1, y2)xi11 x

i2
2 + f(y2, y1)xi21 x

i1
2 .

And finally, the first factor is p− 1 copies of H∗BU(2), and the second is
(
p−1

2

)
copies of H∗(CP∞×CP∞),

exactly as predicted.

These are calculations for nontrivial spaces, that have given us very good evidence for the conjecture
that TH∗X = H∗map(BCp, X). As stated, this isn’t quite true – for instance, you have to p-complete – but
we’re on the way to stating and proving the truth.
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