Lecture 11: Cohomology of mapping spaces

October 22, 2014

Recall that we had this functor $T_{V}: \mathcal{K} \rightarrow \mathcal{K}$ satisfying

$$
\operatorname{Hom}_{\mathcal{K}}\left(T_{V} K, L\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(K, H^{*} B V \otimes L\right)
$$

Example 1. If X and Y are good spaces, then

$$
\operatorname{Hom}_{\mathcal{K}}\left(T_{V} H^{*} X, H^{*} Y\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(H^{*} X, H^{*} B V \otimes H^{*} Y\right)
$$

Let $Y=\operatorname{map}(B V, X)$. Then evaluation

$$
\begin{aligned}
\operatorname{map}(B V, X) \times B V & \longrightarrow X \\
(f, x) & \mapsto f(x)
\end{aligned}
$$

induces

$$
H^{*} X \rightarrow H^{*} \operatorname{map}(B V, X) \otimes H^{*} B V
$$

and thus, by adjunction,

$$
T_{V} H^{*} X \rightarrow H^{*} \operatorname{map}(B V, X)
$$

in \mathcal{K}. This map is often an isomorphism, and we're about to start exploring when it is. If you didn't already know, computing cohomology of mapping spaces is a tough business, so it's nice that we're able to do this.

Extended example: Maps between classifying spaces

This area was deeply explored by Wilkerson. Let G be a group and $B G$ the classifying space, so that $\Omega B G \simeq G$. If G is discrete, this must satisfy $\pi_{1} B G \cong G, \pi_{n} B G=0$ for $n \geq 2$. By covering space theory, if X is a connected pointed CW-complex and G is discrete, then $[X, B G]_{*} \cong \operatorname{Hom}_{\mathrm{Gp}}\left(\pi_{1} X, G\right)$. If we instead look at unpointed maps, we get

$$
[X, B G] \cong \operatorname{Hom}_{G p}\left(\pi_{1} X, G\right) / \text { conjugacy in } G=: \operatorname{Rep}\left(\pi_{1} X, G\right)
$$

In particular, we can prove
Theorem 2. If H and G are discrete, then the space of unpointed maps

$$
\operatorname{map}(B H, B G)=\coprod_{\rho \in \operatorname{Rep}(H, G)} B C(\rho)
$$

where the centralizer $B C(\rho) \subseteq G$ is the subgroup of elements commuting with $\rho(H)$.
Proof. Any homomorphism $H \rightarrow G$ extends to $C(\rho) \times H \rightarrow G$, and since B preserves products, we get $B C(\rho) \times B H \rightarrow B G$, or

$$
\coprod_{\rho \in \operatorname{Rep}(H, G)} B C(\rho) \rightarrow \operatorname{map}(B H, B G)
$$

By the above, we can see that this is an isomorphism on π_{0}. Now fixing a basepoint ρ, we find that

$$
\left[S^{1}, \operatorname{map}(B H, B G)\right]_{*} \cong\left[S^{1} \times B H, B G\right]_{/ B H},
$$

where the decoration at the end means that we're looking at diagrams of the form

These maps are determined up to homotopy by their effects on π_{1}, i. e., as elements of $\operatorname{Hom}(\mathbb{Z} \times H, G)_{/ \rho}$. The ' $/ \rho$ ' determines the effect of such a map on H, so we only have to look at the map $\mathbb{Z} \rightarrow G$, which must land in $C(\rho)$. This ends the proof.

If $H=\mathbb{Z}, B H=S^{1}$. This shows that the free loop space of $B G$, the space $\operatorname{map}\left(S^{1}, B G\right)$, is just $\coprod_{x \in G / \text { conj }} B C(x)$.

Now suppose that G is a Lie group; in fact, let $G=U(n)$. (Note $U(1)=S^{1}$, and $B S^{1}=\mathbb{C} P^{\infty}$.) The maximal torus is a map

$$
T=\underbrace{S^{1} \times \cdots \times S^{1}}_{n} \rightarrow U(n)
$$

which on classifying spaces is

$$
\mathbb{C} P^{\infty} \times \cdots \times \mathbb{C} P^{\infty} \rightarrow B U(n)
$$

The symmetric group Σ_{n} acts on the left-hand side, and on cohomology,

$$
H^{*} B U(n) \cong H^{*}\left(\mathbb{C} P^{\infty, \times n}\right)^{\Sigma_{n}}=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]^{\Sigma_{n}} \cong \mathbb{F}_{p}\left[c_{1}, \ldots, c_{n}\right]
$$

where $\left|x_{i}\right|=2$ and c_{i} are the universal Chern classes.
If H is discrete, then $\operatorname{Rep}(H, U(n))$ is the set of n-dimensional complex representations of H. We still have a map

$$
\coprod_{\rho \in \operatorname{Rep}(H, U(n))} B C(\rho) \rightarrow \operatorname{map}(B H, B U(n)) .
$$

But without covering space theory, there's little hope for this map to be a weak equivalence.
Example 3. Let $H=C_{p} \cong \mathbb{Z} / p$. $\operatorname{Rep}\left(C_{p}, U(1)\right)$ is multiplication by $\zeta^{i}, 0 \leq i \leq p-1$, where ζ is a primitive p th root of unity. That is, each i gives us a representation

$$
\begin{gathered}
\left\{1, \tau, \ldots, \tau^{p-1}\right\}=C_{p} \longrightarrow U(1)=S^{1} \\
\rho_{i}: \tau \mapsto \zeta^{i} .
\end{gathered}
$$

Since $U(1)$ is abelian, $C\left(\rho_{i}\right)=U(1)=S^{1}$. Thus, the above map is just

$$
\coprod_{i=0}^{p-1} \mathbb{C} P^{\infty} \rightarrow \operatorname{map}\left(B \mathbb{Z} / p, \mathbb{C} P^{\infty}\right)
$$

Suppose we knew that $T H^{*} \mathbb{C} P^{\infty}=H^{*} \operatorname{map}\left(B \mathbb{Z} / p, \mathbb{C} P^{\infty}\right)$. The left-hand side is then

$$
U(F(0)) \otimes U(\Phi(F(1))) \cong \mathbb{F}_{p}[x] /\left(x^{p}-x\right) \otimes H^{*} \mathbb{C} P^{\infty}
$$

But $x^{p}-x$ is a separable polynomial over \mathbb{F}_{p}, all of whose roots are in \mathbb{F}_{p}. Thus, we get

$$
\mathbb{F}_{p}[x] /\left(x^{p}-x\right) \cong \prod_{i=0}^{p-1} \mathbb{F}_{p} \quad \text { via } \quad f(x) \mapsto(f(0), f(1), \ldots, f(p-1))
$$

Thus,

$$
H^{*} \operatorname{map}\left(B \mathbb{Z} / p, \mathbb{C} P^{\infty}\right) \cong\left(\prod_{i=0}^{p-1} \mathbb{F}_{p}\right) \otimes H^{*} \mathbb{C} P^{\infty} \cong H^{*}\left(\coprod_{i=0}^{p-1} \mathbb{C} P^{\infty}\right)
$$

Example 4. Again take $H=C_{p}=\mathbb{Z} / p$, and now $G=U(n)$. Every n-dimensional representation of C_{p} is diagonalizable, and thus of the form

$$
\rho(\tau)=\left(\begin{array}{cccc}
\zeta^{i_{1}} & 0 & \ldots & 0 \\
0 & \zeta^{i_{2}} & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \ldots & 0 & \zeta^{i_{n}}
\end{array}\right)
$$

where without loss of generality, $i_{1} \geq \ldots \geq i_{n}$. Write $\left(i_{1}, \ldots, i_{n}\right)=\left(j_{1}, \ldots, j_{1}, j_{2}, \ldots, j_{2}, \ldots, j_{k}\right)$ with $j_{1}>\cdots>j_{k}$ and there are s_{m} copies of each j_{m}. Then

$$
C(\rho)=U\left(s_{1}\right) \times \cdots \times U\left(s_{k}\right) .
$$

Thus,

$$
\coprod_{\rho \in \operatorname{Rep}\left(C_{p}, U(n)\right)} B C(\rho)=\coprod_{\rho} B U\left(s_{1}\right) \times \cdots \times B U\left(s_{k}\right) .
$$

If $n=2$, there are just two cases: $i_{1}=i_{2}$, or $i_{1}>i_{2}$. So

$$
\coprod_{\rho \in \operatorname{Rep}\left(C_{p}, U(2)\right)} B C(\rho)=\coprod_{p-1 \geq i_{1}=i_{2} \geq 0} B U(2) \sqcup \coprod_{p-1 \geq i_{1}>i_{2} \geq 0} B U(1) \times B U(1)
$$

What is $T H^{*} B U(2)$? Well, T is exact, so we can pull out the Σ_{2}-action: $T H^{*} B U(2) \cong T\left(H^{*}\left(\mathbb{C} P^{\infty} \times\right.\right.$ $\left.\left.\mathbb{C} P^{\infty}\right)\right)^{\Sigma_{2}} . T$ also commutes with tensor products, so this is

$$
\left(T H^{*} \mathbb{C} P^{\infty} \otimes T H^{*} \mathbb{C} P^{\infty}\right)^{\Sigma_{2}} \cong\left[\mathbb{F}_{p}\left[y_{1}, y_{2}, x_{1}, x_{2}\right] /\left(x_{i}^{p}-x_{i}\right)\right]^{\Sigma_{2}}
$$

where $\left|y_{i}\right|=2,\left|x_{i}\right|=0$, and the symmetric group action is the obvious thing, switching 1 's and 2 's. We can now calculate that

$$
T H^{*} B U(2)=\prod_{i_{1}=i_{2}} \mathbb{F}_{p}\left[y_{1}, y_{2}\right]_{2}^{\Sigma} x_{1}^{i_{1}} x_{2}^{i_{2}} \times \prod \mathbb{F}_{p}\left[y_{1}, y_{2}\right] x_{1}^{i_{1}} x_{2}^{i_{2}}
$$

The polynomials in the right-hand factor are not Σ_{2}-invariant, but they correspond bijectively to the $\Sigma_{2^{-}}$ invariants, via

$$
f\left(y_{1}, y_{2}\right) x_{1}^{i_{1}} x_{2}^{i_{2}} \mapsto f\left(y_{1}, y_{2}\right) x_{1}^{i_{1}} x_{2}^{i_{2}}+f\left(y_{2}, y_{1}\right) x_{1}^{i_{2}} x_{2}^{i_{1}}
$$

And finally, the first factor is $p-1$ copies of $H^{*} B U(2)$, and the second is $\binom{p-1}{2}$ copies of $H^{*}\left(\mathbb{C} P^{\infty} \times \mathbb{C} P^{\infty}\right)$, exactly as predicted.

These are calculations for nontrivial spaces, that have given us very good evidence for the conjecture that $T H^{*} X=H^{*} \operatorname{map}\left(B C_{p}, X\right)$. As stated, this isn't quite true - for instance, you have to p-complete - but we're on the way to stating and proving the truth.

