Lecture 12: Simplicial stuff

October 27, 2014

We've been approximating H^* map(BV, X) with $T_V H^* X$. We've done a lot of algebra so far – time to put in the homotopy theory. This is a thing called the **(co)homology spectral sequence of a cosimplicial space**. It's easy to define, but convergence is harder to come by. There's also the **Bousfield-Kan spectral sequence**, which is an unstable version of the Adams spectral sequence.

(Co)simplicial objects

As usual, Δ is the category whose objects are the ordered finite sets $[n] = \{0 \le 1 \le 2 \le \cdots \le n\}$ and whose morphisms are the order-preserving functions. Every order-preserving map can be written as a composition of standard order-preserving maps

$$\begin{aligned} &d^{i}:[n] \hookrightarrow [n+1] \qquad (\text{skip } i) \\ &s^{i}:[n] \twoheadrightarrow [n-1] \qquad (\text{double } i) \end{aligned}$$

For example, the map $[1] \rightarrow [2]$ sending both 0 and 1 to 0 is $d^2 d^1 s^0$. (There are relations between the d's and s's, which you can look up.)

$$\{0\} \xrightarrow{\longleftarrow} \{0,1\} \xrightarrow{\Longrightarrow} \{0,1,2\} \cdots$$

A cosimplicial object of a category C is a functor $X : \Delta \to C$, and a simplicial object is $X : \Delta^{\text{op}} \to C$. Example 1. There's a cosimplicial topological space

$$\Delta^{\bullet}: [n] \mapsto \Delta^n$$

where Δ^n is the standard *n*-simplex

$$\Delta^n = \left\{ (x_0, \dots, x_n) \in \mathbb{R}^{n+1} : x_i \ge 0, \sum x_i = 1 \right\}.$$

The d^i include various faces, and the s^i project onto various faces.

Example 2. If X is a space, $S_{\bullet}X = \operatorname{Hom}_{\mathsf{Top}}(\Delta^{\bullet}, X)$ is a simplicial object.

Example 3. Let \mathcal{K} be the category of unstable algebras, and $G : \mathcal{K} \to \mathcal{K}$ the functor UF, the free algebra on the forgetful functor to graded vector spaces. There is a map in \mathcal{K} , $\epsilon_K : G(K) \to K$ and a map in graded vector spaces $s_{-1} : K \to G(K)$.

We get a simplicial diagram

$$G^{3}(K) \xrightarrow[\epsilon_{G^{2}K}]{G^{2}\epsilon_{K}} G^{2}(K) \xrightarrow[\epsilon_{GK}]{G\epsilon_{K}} G(K) \xrightarrow[K]{K} K.$$

This is an augmented simplicial object $\epsilon : G^{\bullet}K \to K$.

. . .

Example 4. The category of functors $X : \Delta^{\text{op}} \to \mathsf{Sets}$ is the category sSets of simplicial sets. There are simplicial sets

$$\Delta^n = \operatorname{map}_{\Delta}(\cdot, [n]).$$

We have

$$\operatorname{Hom}_{\mathsf{sSets}}(\Delta^n, X) \cong X_n := X([n])$$

Definition 5. Let $A \in \mathsf{sAb}$ (the category of simplicial abelian groups). We define the **normalization** to be

$$NA_n = \bigcap_{i=1}^n \ker(d_i : A_n \to A_{n-1})$$

Then $d_0: NA_n \to NA_{n-1}$ and $d_0^2 = 0$ since $d_0^2 = d_0 d_1$ (one of the simplicial relations left unmentioned earlier). Since NA_n is an abelian group, (NA, d_0) is a chain complex. Let $\pi_n A = H_n(NA_{\bullet}, d_0)$.

Theorem 6 (Dold-Kan Theorem). Let $A \in \mathsf{sAb}$. Then

$$A_n \cong \bigoplus_{\phi:[n] \twoheadrightarrow [m]} \phi^* N A_m$$

and $N: \mathsf{sAb} \to \mathsf{Ch}_*(\mathsf{Ab})$ is an equivalence of categories.

This is a way of encoding the observation that we can rewrite the simplicial object

$$A_0 \xrightarrow{\longrightarrow} A_1 \xrightarrow{\Longrightarrow} A_2 \cdots$$

as

$$A_0 = NA_0 \xrightarrow{\longrightarrow} NA_1 \oplus s_0 NA_0 \xrightarrow{\longrightarrow} NA_2 \oplus s_0 NA_1 \oplus s_0 NA_1 \oplus s_0^2 NA_0 \qquad \cdots,$$

from which the simplicial structure maps are all determined: d_0 is the differential on NA_i , the other d's vanish on NA_i , and the simplicial relations (like $d_0s_0 = d_0s_1 = id$) determine the maps on the other pieces. Let

$$L_n A = \operatornamewithlimits{colim}_{\substack{\phi:[n]\twoheadrightarrow[m]\\\phi\neq id}} \phi^* N A_m.$$

This is the *n*th **latching object**. Then there is a split short exact sequence

$$0 \to L_n A \to A_n \to N A_n \to 0$$

and so $NA_n \cong A_n / (s_0 A_{n-1} + \dots + s_{n-1} A_{n-1}).$

Define

$$N^{(k)}A_n = \bigcap_{i > k} \ker(d_i : A_n \to A_{n-1}).$$

So $N^{(1)}A_n = NA_n$, and $N^{(k)}A_n = A_n$ for k > n. Define

$$\partial = \sum (-1)^i d_i.$$

On NA, this is just d_0 . There is a nested sequence of chain complexes

$$NA \subseteq N^{(2)}A_{\bullet} \subseteq \cdots \subseteq A_{\bullet}.$$

Proposition 7. The inclusion $N^{(k-1)}A_{\bullet} \hookrightarrow N^{(k)}A_{\bullet}$ is a chain equivalence with retraction r(x) = x - x $s_{k-1}d_k(x).$

Proof. You can check that s_k (with some sign) is a chain equivalence from id to $r: N^{(k)}A \to N^{(k)}A$.

In particular, $\pi_* A_{\bullet} = H_* \left(A, \sum (-1)^i d_i \right)$. If $\mathbb{Z}[\cdot]$ is the free abelian group functor on sets, then $\pi_* \mathbb{Z}[S_{\bullet}(X)] =$ $H_*(X)$, for X a space.

The skeletal filtration

Let \mathcal{C} be a category with colimits, and define $\mathbf{s}\mathcal{C} = \{X_{\bullet} : \mathbf{\Delta}^{\mathrm{op}} \to \mathcal{C}.$ Letting $\mathbf{\Delta}_{\leq n} \subseteq \mathbf{\Delta}$ be the full subcategory on objects $[m], m \leq n$, we also define $\mathbf{s}_n \mathcal{C} = \{X_{\bullet} : \mathbf{\Delta}_{\leq n}^{\mathrm{op}} \to \mathcal{C}\}.$ We have a restriction functor

$$(i_n)^*: \mathsf{s}\mathcal{C} \to \mathsf{s}_n\mathcal{C}$$

and this has a left adjoint

$$(i_n)_!: \mathbf{s}_n \mathcal{C} \to \mathbf{s}\mathcal{C},$$

which we can define by

$$((i_n)_!X)_m = \operatornamewithlimits{colim}_{\substack{\phi:[m] \to [k] \\ k \leq n}} X_k = \operatornamewithlimits{colim}_{\substack{\phi:[m] \twoheadrightarrow [k] \\ k \leq n}} X_k$$

(the second isomorphism since the surjections are cofinal in all maps to [k]).

For example, if you just have an object

$$X_0 \xrightarrow{\Longrightarrow} X_1,$$

then the level 2 piece of $(i_1)_! X_{\bullet}$ has to be defined as

$$(i_1)_! X_2 = s_0 X_1 \prod_{s_0 s_0 X_0} s_1 X_1.$$

Definition 8. If $X \in s\mathcal{C}$, then

$$sk_n(X) = (i_n)!(i_n)^*X.$$

This maps to X by the counit of the above adjunction. Again using the above example, if X is a simplicial object, we have an obvious map

$$s_0 X_1 \coprod_{s_0 s_0 X_0} s_1 X_1 \to X_2$$

There is a sequence

$$sk_0X \subseteq sk_1X \subseteq \cdots \subseteq X_{\bullet}.$$

The union of the skeleta is X_{\bullet} , and sk_nX agrees with X_{\bullet} in degrees up to *n*. Remark 9.

$$(sk_{n-1}X)_n = \operatorname{colim}_{\substack{\phi:[n] \twoheadrightarrow [m] \\ m < n}} X_n = L_n X_n$$

the nth latching object.

Construction 10. Let $X \in s\mathcal{C}$, $K \in sSet$. Then

$$(K \otimes X)_n = \prod_{K_n} X_n = K_n \otimes X_n$$

with face and degeneracy maps coming from K and X.

For example, if $X \in \mathcal{C}$, and thus a constant object in $s\mathcal{C}$, then

$$\operatorname{Hom}_{\mathsf{s}\mathcal{C}}(\Delta^n \otimes X, Y) \cong \operatorname{Hom}_{\mathcal{C}}(X, Y_n).$$

Theorem 11. There is a pushout diagram in sC

This is a really categorical way of saying that you get the *n*-skeleton from the (n-1)-skeleton by adding in the non-degenerate *n*-simplices. This diagram is what you should get out of today.