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Last time, we introduced simplicial objects sC = {X : ∆op → C}, and defined the skeleton filtration,
in which sknX ⊆ X was (morally) generated by the non-degenerate simplices in degree ≤ n. There is a
pushout diagram

∂∆n ⊗Xn

∐
∂∆n⊗LnX

∆n ⊗ LnX //

��

skn−1X

��
∆n ⊗X // sknX

saying that we can get the n-skeleton by attaching the nondegenerate n-simplices to the (n − 1)-skeleton.
Maybe it’s worth writing down an example.

Definition 1. Let C = Top. The geometric realization functor

| · | : sTop→ Top

is defined by the coequalizer diagram∐
φ:[n]→[m] ∆n ×Xm //

// ∐
n ∆n ×Xn

// |X|.

Here ∆n is the topological n-simplex. The two maps are

∆n ×Xm
φ×Xm//

∆n×φ∗

��

∆m ×Xm

∆n ×Xn.

Theorem 2. There are pushout diagrams in Top

∂∆n ×Xn

∐
∂∆n×LnX

∆n × LnX //

jn

��

|skn−1X|

��
∆n ×Xn

// |sknX|.

(Recall that

LnX = colimφ:[n]�[m]
φ6=id

Xm =

m−1⋃
i=0

siXn−1.)

Also, colim |sknX| = |X|.
Suppose that LnX → Xn is a cofibration (a relative CW-complex, if you’d like, or a neighborhood

retract). Then define NXn = Xn/LnX. The cofiber of jn is then ∆n/∂∆n ∧NXn = ΣnNXn.
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Application: Let E∗ be your favorite homology theory. We have this little picture

|sk0X| // |sk1X| //

��

|sk2X| //

��

· · · |X|

NX0 ΣNX1 Σ2NX2

and applying E∗ gives

E∗|sk0X| // E∗|sk1X| //

��

E∗|sk2X| //

��

· · · E∗|X|

E∗NX0 E∗ΣNX1

88

E∗Σ
2NX2

::

where the dotted arrows are connecting maps in long exact sequences. This can be rearranged into a spectral
sequence

E1
s,t = Ẽs+tΣ

sNXs = ẼtNXs ⇒ Es+t|X|.

Theorem 3 (Conservation of symbols). Under these hypotheses, ẼtNXs
∼= NẼtXs, the second N now

meaning the normalization of the simplicial abelian group ẼtX•.

Thus, E2
s,t = πsẼtX• = Hs(NẼt, ∂).

Remark 4. Let S•X, for X a space, be given by SnX = map(∆n, X), and let E∗ = H(·,Z). Then

E2
s,t =

{
0 t 6= 0

πsNZS•X = Hs(ZS•X, ∂).

So H∗|S•X| = H∗X. This is most of the proof that |S•X| ' X.

Cosimplicial spaces

Let X• be a cosimplicial space. The analogue of geometric realization is totalization, given as an equalizer

Tot(X) // ∏
n

Hom(∆n, Xn) //
// ∏
φ:[n]→[m]

Hom(∆n, Xm).

Then we check that Tot(X) = mapsTop(∆
•, X•).

We can also think of cosimplicial spaces as simplicial objects in Topop, so they have a skeletal filtration,
which in this context is called the coskeletal filtration. It gives a decomposition of Tot,

Tot(X) ∼= lim TotnX,

together with the pullback squares

TotnX //

pn

��

Hom(∆n, Xn)

jn

��
Totn−1X // Hom(∂∆n, Xn)×Hom(∂∆n,MnX) Hom(∆n,MnX).

Here MnX is the matching space
MnX = lim

φ:[n]�[m]
φ6=id

Xm.

As before, we can ask that Xn → MnX is a fibration; then jn is a fibration, and we get a tower of
fibrations. Unfortunately, in order to start defining homotopy groups, we need to choose a basepoint, and
this may not be possible. In fact, it can happen that TotX = ∅!
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Assume that Xn → MnX is a fibration, and let X−1 be the equalizer of d0, d1 : X0 → X1. Assume
X−1 6= ∅. Then there are maps

X−1 = mapcTop(∗, X•)→ mapcTop(∆
•, X•) = Tot(X),

and a choice of basepoint for X−1 is a choice of basepoint for the Tot tower (necessarily a constant map
∆•tøX•).

If NnX is the fiber of Xn → MnX at this basepoint, then the fiber of jn is ΩnNnX, and you get a
second quadrant spectral sequence

Hs(NπtX
•, ∂) = πsπtX

• ⇒ πt−s Tot(X).

(Careful! When t = 0, the left-hand side only makes sense for s = 0; when t = 1, only for s = 0 or 1.)
There’s much more to discuss: when does this converge? What’s with the restrictions on s? What if you

can’t choose a basepoint? We’ll get to this next class.
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