Lecture 15: Computations with the Bousfield-Kan spectral sequence

November 3, 2014

No class on Friday!
Last time, we introduced the Bousfield-Kan spectral sequence. Given a continuous map of spaces (or a
map of simplicial sets f : X — Y'), this is a spectral sequence

R*Der(H*Y, X" H* X))y« = m_s(map(X, (Fp)oe(Y)); f),

where (F,)s(Y) is the Bousfield-Kan p-completion.

Ezample 1. Let X = % and let Y be simply connected. Then map(X,F,~Y) =Y, and derivations into X'F,
are the same as homomorphisms into it, so we get

R*Deryc(H*Y,X'F,) = Exti(H*Y, H*S") = m—s(Fp) oo Y-
This is the unstable Adams spectral sequence.
Proposition 2. Suppose K = U(M) and M° = 0. Then
Exty (U(M), H*S") = Ext}; (M, S'F,).
For example, this gives
Exty (H*S™, H*S") = Ext}, (X"F,, X'F,).

Proof. Choose a simplicial projective resolution in & of M,
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(the arrows along the bottom are a simplicidteontrattion, witich1s part of the definition of a resolution here).
Here’s what the simplicial stuff buys you: applying U preserves all the simplicial relations and the relations
making the bottom arrows a contraction, so U(P,) is also a simplicial resolution of U(M), this time in K.

So we get
Ext;,(U(M), H*S') = n°Homy (U(P,), H*S") = m5Homy, (P,, ©'TF,).

The last step is using adjoint functors and the fact that M° = 0, so no maps land in H°S*. Thus, we get

Ext (U(M), H*S?) = Ext}, (S'F,).

Recall that there’s an adjunction in U,
Homy, (M, XN) = Homy (QM, N).
Proposition 3. For all s there is a spectral sequence
Ext}, (Q3 M, N) = Ext};"(M,S°N).

Proof. This is a standard composite-functor spectral sequence, of which you can find constructions elsewhere.
We might go over one in detail when we're in a less abelian setting. O



Ezxample 4. Let s = 1. The spectral sequence is now just
Ext}, (Q,M, N) = Ext},"(M,N).

We also know that ;M = 0 for ¢ > 1, so there’s only one differential — the spectral sequencce is really just
a long exact sequence

s Exct) (M, N)—=Bxt}, (M, SN)—=Ext}, () M, N)—2=Ext ™ (M, N)—- - - |
Let’s specialize even further: let’s take p = 2 and M = X" t!F,, N = X'F,. The long exact sequence is
- —— Bxt},(S"Fy, $1Fy) — > Ext), (57 Fy, $HHF,) — > Extd 1 (D201 Fy, $1Fy) —— Ext), ! (S"Fy, B1Fy) — - - -
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The sequence in homotopy is a famous long exact sequence called the EHP sequence: E for Finhdngung,
the German word for ‘suspension’, H for Hopf, and P for Whitehead product. On homotopy, it’s induced by

a 2-local fibration

E H

s" Q5"+ Qs2nt,

There are a few things we can say about this. Since (X"F3)* = 0 for & < n, we can show that
Ext;, (X"Fy, XFy) = 0 for t — s < m. In particular, the term with the X2"*! has this range decreasing
by twos, so E : Ext),(X"Fq, $tF) — Exty, (X" Fy, B1F1F,) is an isomorphism a lot of the time, namely
when ¢t — s < 2n — 1 (the stable range). Its stable value is the standard Ext term over the Steenrod algebra.

Secondly,

0 t-s#£1
Ext},(SF,, $F,) = {F . j 7 X
2 —s=1

This converges to (and is) the homotopy groups of the circle — or at least their associated graded, filtering
mS' = Z by the 2-adic filtration. We can prove this by using the projective resolution

F(1) 3F,.
Thus, Wl(Fg)oosl = ZQ.
Let’s now try to do this for S2. We know what the answer is, in a small range. The standard way of

drawing the stable Ext is in a chart with ¢ — s drawn horizontally and s drawn vertically. In low degrees,
this looks like

Z 7.)2 72 78
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Here the vertical lines denote multiplication by 2, and the diagonal lines multiplication by 7, the generator

of -
We have
Ext} (S2Fy, B'Fy) = Ext}, (Z3Fy, D1 1F,)
for t — s = 3.

(At this point, PG used the EHP sequences for S2, S3, and S*, and knowledge of the above cohomology
groups, to very rapidly calculate the homotopy groups of these spheres in low degrees, and your intrepid
scribe was unable to keep up.)



