Lecture 15: Computations with the Bousfield-Kan spectral sequence

November 3, 2014

No class on Friday!

Last time, we introduced the Bousfield-Kan spectral sequence. Given a continuous map of spaces (or a map of simplicial sets $f: X \rightarrow Y$), this is a spectral sequence

$$
R^{s} \operatorname{Der}_{\mathcal{K}}\left(H^{*} Y, \Sigma^{t} H^{*} X\right)_{f^{*}} \Rightarrow \pi_{t-s}\left(\operatorname{map}\left(X,\left(\mathbb{F}_{p}\right)_{\infty}(Y)\right) ; f\right),
$$

where $\left(\mathbb{F}_{p}\right)_{\infty}(Y)$ is the Bousfield-Kan p-completion.
Example 1. Let $X=*$ and let Y be simply connected. Then $\operatorname{map}\left(X, \mathbb{F}_{p} \infty Y\right) \cong Y$, and derivations into $\Sigma^{t} \mathbb{F}_{p}$ are the same as homomorphisms into it, so we get

$$
R^{s} \operatorname{Der}_{\mathcal{K}}\left(H^{*} Y, \Sigma^{t} \mathbb{F}_{p}\right) \cong \operatorname{Ext}_{\mathcal{K}}^{s}\left(H^{*} Y, H^{*} S^{t}\right) \Rightarrow \pi_{t-s}\left(\mathbb{F}_{p}\right)_{\infty} Y
$$

This is the unstable Adams spectral sequence.
Proposition 2. Suppose $K=U(M)$ and $M^{0}=0$. Then

$$
\operatorname{Ext}_{\mathcal{K}}^{s}\left(U(M), H^{*} S^{t}\right) \cong \operatorname{Ext}_{\mathcal{U}}^{s}\left(M, \Sigma^{t} \mathbb{F}_{p}\right)
$$

For example, this gives

$$
\operatorname{Ext}_{\mathcal{K}}^{s}\left(H^{*} S^{n}, H^{*} S^{t}\right) \cong \operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma^{n} \mathbb{F}_{p}, \Sigma^{t} \mathbb{F}_{p}\right)
$$

Proof. Choose a simplicial projective resolution in \mathcal{U} of M,

(the arrows along the bottom are a simpliciateontraction, whectris part of the definition of a resolution here). Here's what the simplicial stuff buys you: applying U preserves all the simplicial relations and the relations making the bottom arrows a contraction, so $U\left(P_{\mathbf{\bullet}}\right)$ is also a simplicial resolution of $U(M)$, this time in \mathcal{K}. So we get

$$
\operatorname{Ext}_{\mathcal{U}}^{\mathcal{s}}\left(U(M), H^{*} S^{t}\right)=\pi^{S} \operatorname{Hom}_{\mathcal{K}}\left(U\left(P_{\bullet}\right), H^{*} S^{t}\right) \cong \pi^{S} \operatorname{Hom}_{\mathcal{U}}\left(P_{\bullet}, \Sigma^{t} \mathbb{F}_{p}\right) .
$$

The last step is using adjoint functors and the fact that $M^{0}=0$, so no maps land in $H^{0} S^{t}$. Thus, we get

$$
\operatorname{Ext}_{\mathcal{K}}^{\mathcal{S}}\left(U(M), H^{*} S^{t}\right) \cong \operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma^{t} \mathbb{F}_{p}\right) .
$$

Recall that there's an adjunction in \mathcal{U},

$$
\operatorname{Hom}_{\mathcal{U}}(M, \Sigma N) \cong \operatorname{Hom}_{\mathcal{U}}(\Omega M, N) .
$$

Proposition 3. For all s there is a spectral sequence

$$
\operatorname{Ext}_{\mathcal{U}}^{p}\left(\Omega_{q}^{s} M, N\right) \Rightarrow \operatorname{Ext}_{\mathcal{U}}^{p+q}\left(M, \Sigma^{s} N\right) .
$$

Proof. This is a standard composite-functor spectral sequence, of which you can find constructions elsewhere. We might go over one in detail when we're in a less abelian setting.

Example 4. Let $s=1$. The spectral sequence is now just

$$
\operatorname{Ext}_{\mathcal{U}}^{p}\left(\Omega_{q} M, N\right) \Rightarrow \operatorname{Ext}_{\mathcal{U}}^{p+q}(M, \Sigma N)
$$

We also know that $\Omega_{q} M=0$ for $q>1$, so there's only one differential - the spectral sequencce is really just a long exact sequence

$$
\cdots \longrightarrow \operatorname{Ext}_{\mathcal{U}}^{s}(\Omega M, N) \longrightarrow \operatorname{Ext}_{\mathcal{U}}^{s}(M, \Sigma N) \longrightarrow \operatorname{Ext}_{\mathcal{U}}^{s-1}\left(\Omega_{1} M, N\right) \xrightarrow{d_{2}} \operatorname{Ext}_{\mathcal{U}}^{s+1}(\Omega M, N) \longrightarrow \cdots
$$

Let's specialize even further: let's take $p=2$ and $M=\Sigma^{n+1} \mathbb{F}_{2}, N=\Sigma^{t} \mathbb{F}_{2}$. The long exact sequence is

The sequence in homotopy is a famous long exact sequence called the EHP sequence: E for Einhängung, the German word for 'suspension', H for Hopf, and P for Whitehead product. On homotopy, it's induced by a 2-local fibration

$$
S^{n} \xrightarrow{E} \Omega S^{n+1} \xrightarrow{H} \Omega S^{2 n+1} .
$$

There are a few things we can say about this. Since $\left(\Sigma^{n} \mathbb{F}_{2}\right)^{k}=0$ for $k<n$, we can show that $\operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma^{n} \mathbb{F}_{2}, \Sigma^{t} \mathbb{F}_{2}\right)=0$ for $t-s<n$. In particular, the term with the $\Sigma^{2 n+1}$ has this range decreasing by twos, so $E: \operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma^{n} \mathbb{F}_{2}, \Sigma^{t} \mathbb{F}_{2}\right) \rightarrow \operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma^{n+1} \mathbb{F}_{2}, \Sigma^{t+1} \mathbb{F}_{2}\right)$ is an isomorphism a lot of the time, namely when $t-s \leq 2 n-1$ (the stable range). Its stable value is the standard Ext term over the Steenrod algebra.

Secondly,

$$
\operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma \mathbb{F}_{2}, \Sigma^{t} \mathbb{F}_{2}\right)= \begin{cases}0 & t-s \neq 1 \\ \mathbb{F}_{2} & t-s=1\end{cases}
$$

This converges to (and is) the homotopy groups of the circle - or at least their associated graded, filtering $\pi_{1} S^{1}=\mathbb{Z}$ by the 2-adic filtration. We can prove this by using the projective resolution

$$
\cdots \longrightarrow F(4) \xrightarrow{\mathrm{Sq}^{1}} F(3) \xrightarrow{\mathrm{Sq}^{1}} F(2) \xrightarrow{\mathrm{Sq}^{1}} F(1) \longrightarrow \Sigma \mathbb{F}_{2} .
$$

Thus, $\pi_{1}\left(\mathbb{F}_{2}\right)_{\infty} S^{1} \cong \mathbb{Z}_{2}$.
Let's now try to do this for S^{2}. We know what the answer is, in a small range. The standard way of drawing the stable Ext is in a chart with $t-s$ drawn horizontally and s drawn vertically. In low degrees, this looks like

Here the vertical lines denote multiplication by 2, and the diagonal lines multiplication by η, the generator of π_{1}.

We have

$$
\operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma^{2} \mathbb{F}_{2}, \Sigma^{t} \mathbb{F}_{2}\right) \cong \operatorname{Ext}_{\mathcal{U}}^{s}\left(\Sigma^{3} \mathbb{F}_{2}, \Sigma^{t+1} \mathbb{F}_{2}\right)
$$

for $t-s=3$.
(At this point, PG used the EHP sequences for S^{2}, S^{3}, and S^{4}, and knowledge of the above cohomology groups, to very rapidly calculate the homotopy groups of these spheres in low degrees, and your intrepid scribe was unable to keep up.)

