
Lecture 16: Towers of fibrations

November 5, 2014

The homotopy spectral sequence of a tower of fibrations

Suppose given a pullback square
X ×B Y //

��

Y

f

��
X

g
// B

with f a fibration, and let ∗ ∈ (X ×B Y ) be a basepoint. There’s a long exact sequence in homotopy dual
to the Mayer-Vietoris sequence. If n ≥ 2, this is an exact sequence

· · · → πn(X ×B Y )→ πnX × πnY
f∗−g∗→ πnB → πn−1(X ×Y B)→ · · · .

If n = 1, it’s a sequence

π2B // π1(X ×B Y ) // π1X × π1Y
f∗g

−1
∗ // π1B // π0(X ×B Y ) // π0X × π0Y // π0B.

What does exactness mean here? It makes sense at π1(X ×B Y ). At π0(X ×B Y ), it means that π1B acts
on π1(X ×B Y ) with orbit space the pullback π0X ×π0B π0Y , and the isotropy subgroup is the image of
π1X × π1Y in π1B. N(ote that f∗g

−1
∗ isn’t a group homomorphism!) This is proven by judicious use of

path-lifting properties.
Now let’s consider a tower of fibrations (all pointed)

...

��
F3

// X3

��
F2

// X2

��
F1

// X1

��
X0

with the following extra structure: a pullback square

Xn

��

// En

pn

��
Xn−1 // Bn
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where the fiber of pn is Fn. (Note that every tower of fibrations admits trivial examples of this structure,
with En = Xn and Bn = Xn−1, but we’re interested in more interesting cases – in particular, when Bn is
an Eilenberg-Mac Lane space.) We get a spectral sequence

Es,t1 = πt−sFs ⇒ πt−s limXs,

induced by the exact couple

...

��
π∗Fs // Xs

��
π∗Fs−1 // π∗Xs−1

��

ee

π∗Fs−2 // Xs−2

��

ee

....

The dotted arrows composed with the horizontal arrows are the d1s, and in general, dr is a map Es,tr →
Es+r,t+r−1r . We can draw this as a second-quadrant spectral sequence, with s the horizontal axis, t the
vertical axis, and the differentials going up and to the left. Again, we have to be careful in low homotopy
degrees: the extra structure of pullback squares gives us a differential out of π0. (How?)

Let’s discuss convergence. Es,t∞ is a subquotient of lims πt−sXs. We say that the spectral sequence
converges if

πt−s limXs
∼→ limπt−sXs.

This needn’t happen: in general, there’s a lim1 term in the kernel.

Proposition 1. A useful criterion for convergence is the following: the spectral sequence converges if for
all n there is an r such that

Es,tr = Es,t∞ for t− s = n.

Example 2. Let X be a pointed space, and consider the Bousfield-Kan resolution

X //Fp(X) //
//
F2
p(X)oo *4 · · · .ks

(Recall that Fp(X) was a product of Eilenberg-Mac Lane spaces with the property that π∗Fp(X) ∼= H∗(X;Fp);
we can take Fp = Ω∞(HFp ∧ Σ∞X+). From this cosimplicial space we get a Tot tower of fibrations, with
pullback squares

Totn F•p(X) //

��

map(∆n,Fn+1
p X)

��
Totn−1 F•p(X) // map(∂∆n,Fn+1

p X)×map (∂∆n,MnF•pX)map(∆n,MnF•pX).

In fact, this diagram simplifies considerably, since the coface and codegeneracy maps other than d0 are all
Fp(•). So the fibration

NnF•pX //Fn+1
p X //MnF•pX

ll
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splits, and the middle space is a product (this is essentially the Dold-Kan theorem). So the pullback diagram
simplifies to

ΩnNnF•pX

��

map∗(∆
n/∂∆n, NnF•p(X))

��
Totn F•p(X) //

��

map(∆n, NnF•p(X))

��
Totn−1 F•p(X) // map(∂∆n, NnF•p(X)).

Letting Fn = ΩnNnF•pX, we get πt−sFs = πtNsF•pX = NsπtF•pX – this s-fold loops functor is what gives
the shift in homotopy at the end of the spectral sequence.

Here’s a variation on this example: use the resolution

map(Y,X)→ map(Y,F•pX).

Since Tot is maps out of something, it can be pulled out of maps into things. So the Tot tower gives

map(Y,TotnX) //

��

map(Y ×∆n, NnF•pX)

��
map(Y,Totn−1X) // map(Y × ∂∆n, NnF•pX).

In degrees 0 and 1, this is

map(Y,Tot1 F•pX) //

��

map(Y ×∆1, N1F•pX)

��
map(Y,F•pX) // map(Y × ∂∆1, N1F•pX).

Given f ∈ π0map(Y,FpX) = HomK(H∗FpX,H∗Y ) (assuming that X and Y are finite type), f lifts to
π0map(Y,Tot1 F•pX), and we then get successive obstructions to lifting this up the Tot tower. These ob-
structions were analyzed by Bousfield in the early 80s.

Example 3. Let X be a path-connected pointed space, and Y a CW-complex. Then map(Y, P•X), where
P•X is the Postnikov tower, is such a tower of fibrations. Recall that the Postnikov tower is a functorial
tower of fibrations

X → · · · → PnX → Pn−1X → · · · → P1X,

where πtX → πtPnX is an isomorphism for t ≤ n, πtPnX = 0 for t > n (so P1X = Bπ1X = Bπ), and
there’s a homotopy pullback diagram of spaces over Bπ

PnX //

��

Bπ

��
Pn−1X // Eπ ×π K(πn, n+ 1).

Here the map Bπ → Eπ ×π K(πn, n + 1) is given by the inclusion of the basepoint to K(πn, n + 1), which
is fixed by π.

Here’s an extremely rapid construction of the Postnikov tower, which you won’t find in the blue book.
Define P 1

nX by the pushout ∨
k>n

∨
f :Sk→X S

k //

��

X

��∨
k>n

∨
f :Sk→X D

k+1 // P 1
nX,
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and define PnX = colimi P
i
nX. We’re just coning off all the higher-dimensional spheres, rinsing, and repeat-

ing.
Define C by the homotopy pushout

PnX //

��

P1X ' Bπ

��
Pn−1X // C.

By the Blakers-Massey excision theorem, there’s a non-canonical isomorphism Pn+1C = Eπ×πK(πn, n+1),
and one can check that after applying Pn+1 to C, the above square is then a homotopy pullback as well.
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