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Recall that TV : K → K (or U → U) is an exact functor satisfying

HomK(TVK,L) ∼= HomK(K,H∗BV ⊗ L).

TVH
∗Y is an algebraic model for H∗map(BV, Y ).

If Y is a space of finite type, then there’s an evaluation map

map(BV, Y )×BV → Y

inducing
H∗map(BV, Y )⊗H∗BV ← H∗Y,

which has an adjoint
H∗map(BV, Y )← TVH

∗Y.

Definition 1. Suppose H∗Y is finite type. Then (Z, ω) is a model for map(BV, Y ) if

1. Z is a space with H∗Z isof finite type, and

2. ω : BV × Z → Y is a map so that ω̃ : TVH
∗Y → H∗Z is an isomorphism.

Theorem 2 (Lannes). If (Z, ω) is a model for map(BV, Y ), then there is a weak equivalence

(Fp)∞Z
∼→ map(BV, (Fp)∞Y ).

Remark 3. We have to do this p-completion because the model can only see cohomology. In special cases,
though, we’ll be able to remove it.

Example 4. Let Y be any space. Then

c : Y → map(BV, Y ),

sending y ∈ Y to the constant map to y, is adjoint to

p2 : BV × Y → Y,

the projection onto the second factor. The algebraic analogue starts with

H∗BV ⊗H∗Y ← H∗Y : (p2)∗;

this has an adjoint
H∗Y ← TVH

∗Y.

Theorem 5 (Miller). Let Y be a finite CW-complex. Then (Y, p2) is a model for map(BV, Y ). Hence
(Fp)∞Y ' map(BV, (Fp)∞Y ).

We’ll later show that we can get rid of the completions.
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Proof. We just need to check that the adjoint map

TVH
∗Y → H∗Y

to (p2)∗ is an isomorphism. For L ∈ U ,

HomU (TVH
∗Y,L) ∼= Hom(H∗Y,H∗BV ⊗ L).

But H∗BV ∼= Fp⊕H̃∗BV , and H̃∗BV is reduced, i. e. there are no nonzero Steenrod operations on it. Thus,

there are no maps H∗Y → H̃∗BV ⊗ L, and we get

HomU (H∗Y,H∗BV ⊗ L) ∼= HomU (H∗Y, L).

Thus, H∗Y and TVH
∗Y is actually isomorphic. To find the isomorphism, we just have to be a little more

careful, noting the actual isomorphisms between the Hom sets above, and use the functoriality of Yoneda’s
lemma: the isomorphism is precisely the adjoint to (p2)∗.

Example 6. Let Y = BU(n). Then we constructed a map

BV ×

 ∐
ρ∈Rep(V,U(n))

BC(ρ)

 =
∐

ρ∈Rep(V,U(n))

BV ×BC(ρ)
e→ BU(n),

where C(ρ) is the centralizer of ρ. Let Z =
∐
ρBC(ρ), and ω = e.

Theorem 7 (Dwyer-Zabrodsky). (Z, ω) is a model for map(BV,BU(n)). Hence∐
ρ

(Fp)∞BC(ρ)
∼→ map(BV, (Fp)∞BU(n)).

Again, we can get rid of the p-completion on the right-hand side, because BV only sees the p-completion
of a simply connected space anyway. It’s harder on the left-hand side.

Proof. We need to show that the adjoint of e∗ gives an isomorphism⊕
H∗BC(ρ) ∼= TVH

∗BU(n).

This was done earlier, using invariant theory.

In fact, the proof can be done for a more general compact group, just by embedding it into U(n).
Now let’s prove Lannes’ theorem. We want to show that a map between two inverse limits is a weak

equivalence. The following will give us a way to do this based on data from the E2 page of the Bousfield-Kan
spectral sequence.

Theorem 8 (Bousfield-Kan comparison lemma). Let {Xn}, {Yn} be pointed towers of fibrations such that
Es,s2 = ∗ for all s > 0 (for instance, if Xn and all Fn are path-connected, as in the Bousfield-Kan tower of
a path-connected space.) Now let f : {Xn} → {Yn} be a map of towers of fibrations so that

f∗ : Es,t2 {Xn}
∼→ Es,t2 {Yn}

for t− s ≥ 0.

Proof. This can be found on p. 261 of Bousfield-Kan’s yellow book. Let Zn be the homotopy fiber of Xn → Yn
(possible since everything’s pointed). This is also a pointed tower of fibrations, and Es,t2 {Zn} = 0. So the
homotopy spectral sequence for {Zn} converges (to 0), and holimZn = ∗. There’s a fiber sequence

holimZn → holimXn → holimYn

and we last need to check that Xn and Yn are both path-connected. This is implied by the hypotheses on
the tower.
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In Lannes’ theorem, {Xn} = {Totn(F•pZφ)} where Zφ ⊆ Z is a path component, and {Yn} = {Totn map(BV,F•pY )φ}.
The first step, then, is to learn how to find path components.

Remark 9. Let’s take a break and do a little algebra. Let A be a finite Fp-algebra, so that xp = x for all
x ∈ A (such as H0(X;Fp)). Then

A ∼=
∏

Homalg(A,Fp)

= Fp(Homalg(A,Fp)) = FSpec(A)
p .

Indeed, let I ⊆ A be a prime ideal. Then Fp → A/I makes A/I a finite-dimensional integral domain over
Fp in which xp = x. But every element of A/I satisfies some minimal polynomial which divides xp − x, so
is in Fp already, so A/I ∼= Fp. Thus I is maximal with residue field Fp.

Let K ∈ K; then

HomFp−alg((TVK)0,Fp) ∼= HomK(TVK,Fp) ∼= HomK(K,H∗BV ).

By the algebraic remark above, we get

(TVK)0 ∼= FHomK(K,H
∗BV )

p .

If Y is a space of finite type, then
H0Y = Fp[π0Y ]

and
H0Y = Fp(π0Y );

in other words,
π0Y = HomFp−alg(H0Y,Fp).

Proposition 10. If (Z, ω) is a model for map(BV, Y ) then π0Z ∼= HomK(H∗Y,H∗BV ).
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