Lecture 17: Approximating mapping spaces with the T-functor

Paul VanKoughnett

November 11, 2014

Recall that $T_{V}: \mathcal{K} \rightarrow \mathcal{K}($ or $\mathcal{U} \rightarrow \mathcal{U})$ is an exact functor satisfying

$$
\operatorname{Hom}_{\mathcal{K}}\left(T_{V} K, L\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(K, H^{*} B V \otimes L\right) .
$$

$T_{V} H^{*} Y$ is an algebraic model for $H^{*} \operatorname{map}(B V, Y)$.
If Y is a space of finite type, then there's an evaluation map

$$
\operatorname{map}(B V, Y) \times B V \rightarrow Y
$$

inducing

$$
H^{*} \operatorname{map}(B V, Y) \otimes H^{*} B V \leftarrow H^{*} Y,
$$

which has an adjoint

$$
H^{*} \operatorname{map}(B V, Y) \leftarrow T_{V} H^{*} Y
$$

Definition 1. Suppose $H^{*} Y$ is finite type. Then (Z, ω) is a model for $\operatorname{map}(B V, Y)$ if

1. Z is a space with $H^{*} Z$ isof finite type, and
2. $\omega: B V \times Z \rightarrow Y$ is a map so that $\widetilde{\omega}: T_{V} H^{*} Y \rightarrow H^{*} Z$ is an isomorphism.

Theorem 2 (Lannes). If (Z, ω) is a model for $\operatorname{map}(B V, Y)$, then there is a weak equivalence

$$
\left(\mathbb{F}_{p}\right)_{\infty} Z \xrightarrow[\rightarrow]{\sim} \operatorname{map}\left(B V,\left(\mathbb{F}_{p}\right)_{\infty} Y\right) .
$$

Remark 3. We have to do this p-completion because the model can only see cohomology. In special cases, though, we'll be able to remove it.
Example 4. Let Y be any space. Then

$$
c: Y \rightarrow \operatorname{map}(B V, Y),
$$

sending $y \in Y$ to the constant map to y, is adjoint to

$$
p_{2}: B V \times Y \rightarrow Y,
$$

the projection onto the second factor. The algebraic analogue starts with

$$
H^{*} B V \otimes H^{*} Y \leftarrow H^{*} Y:\left(p_{2}\right)^{*} ;
$$

this has an adjoint

$$
H^{*} Y \leftarrow T_{V} H^{*} Y .
$$

Theorem 5 (Miller). Let Y be a finite $C W$-complex. Then $\left(Y, p_{2}\right)$ is a model for $\operatorname{map}(B V, Y)$. Hence $\left(\mathbb{F}_{p}\right)_{\infty} Y \simeq \operatorname{map}\left(B V,\left(\mathbb{F}_{p}\right)_{\infty} Y\right)$.

We'll later show that we can get rid of the completions.

Proof. We just need to check that the adjoint map

$$
T_{V} H^{*} Y \rightarrow H^{*} Y
$$

to $\left(p_{2}\right)^{*}$ is an isomorphism. For $L \in \mathcal{U}$,

$$
\operatorname{Hom}_{\mathcal{U}}\left(T_{V} H^{*} Y, L\right) \cong \operatorname{Hom}\left(H^{*} Y, H^{*} B V \otimes L\right)
$$

But $H^{*} B V \cong \mathbb{F}_{p} \oplus \widetilde{H}^{*} B V$, and $\widetilde{H}^{*} B V$ is reduced, i. e. there are no nonzero Steenrod operations on it. Thus, there are no maps $H^{*} Y \rightarrow \widetilde{H}^{*} B V \otimes L$, and we get

$$
\operatorname{Hom}_{\mathcal{U}}\left(H^{*} Y, H^{*} B V \otimes L\right) \cong \operatorname{Hom}_{\mathcal{U}}\left(H^{*} Y, L\right)
$$

Thus, $H^{*} Y$ and $T_{V} H^{*} Y$ is actually isomorphic. To find the isomorphism, we just have to be a little more careful, noting the actual isomorphisms between the Hom sets above, and use the functoriality of Yoneda's lemma: the isomorphism is precisely the adjoint to $\left(p_{2}\right)^{*}$.

Example 6. Let $Y=B U(n)$. Then we constructed a map

$$
B V \times\left(\coprod_{\rho \in \operatorname{Rep}(V, U(n))} B C(\rho)\right)=\coprod_{\rho \in \operatorname{Rep}(V, U(n))} B V \times B C(\rho) \xrightarrow{e} B U(n),
$$

where $C(\rho)$ is the centralizer of ρ. Let $Z=\coprod_{\rho} B C(\rho)$, and $\omega=e$.
Theorem 7 (Dwyer-Zabrodsky). (Z, ω) is a model for $\operatorname{map}(B V, B U(n))$. Hence

$$
\coprod_{\rho}\left(\mathbb{F}_{p}\right)_{\infty} B C(\rho) \xrightarrow{\sim} \operatorname{map}\left(B V,\left(\mathbb{F}_{p}\right)_{\infty} B U(n)\right) .
$$

Again, we can get rid of the p-completion on the right-hand side, because $B V$ only sees the p-completion of a simply connected space anyway. It's harder on the left-hand side.

Proof. We need to show that the adjoint of e^{*} gives an isomorphism

$$
\bigoplus H^{*} B C(\rho) \cong T_{V} H^{*} B U(n)
$$

This was done earlier, using invariant theory.
In fact, the proof can be done for a more general compact group, just by embedding it into $U(n)$.
Now let's prove Lannes' theorem. We want to show that a map between two inverse limits is a weak equivalence. The following will give us a way to do this based on data from the E_{2} page of the Bousfield-Kan spectral sequence.

Theorem 8 (Bousfield-Kan comparison lemma). Let $\left\{X_{n}\right\},\left\{Y_{n}\right\}$ be pointed towers of fibrations such that $E_{2}^{s, s}=*$ for all $s>0$ (for instance, if X_{n} and all F_{n} are path-connected, as in the Bousfield-Kan tower of a path-connected space.) Now let $f:\left\{X_{n}\right\} \rightarrow\left\{Y_{n}\right\}$ be a map of towers of fibrations so that

$$
f_{*}: E_{2}^{s, t}\left\{X_{n}\right\} \xrightarrow{\sim} E_{2}^{s, t}\left\{Y_{n}\right\}
$$

for $t-s \geq 0$.
Proof. This can be found on p. 261 of Bousfield-Kan's yellow book. Let Z_{n} be the homotopy fiber of $X_{n} \rightarrow Y_{n}$ (possible since everything's pointed). This is also a pointed tower of fibrations, and $E_{2}^{s, t}\left\{Z_{n}\right\}=0$. So the homotopy spectral sequence for $\left\{Z_{n}\right\}$ converges (to 0), and holim $Z_{n}=*$. There's a fiber sequence

$$
\operatorname{holim} Z_{n} \rightarrow \operatorname{holim} X_{n} \rightarrow \operatorname{holim} Y_{n}
$$

and we last need to check that X_{n} and Y_{n} are both path-connected. This is implied by the hypotheses on the tower.

In Lannes' theorem, $\left\{X_{n}\right\}=\left\{\operatorname{Tot}_{n}\left(\mathbb{F}_{p}^{\bullet} Z_{\phi}\right)\right\}$ where $Z_{\phi} \subseteq Z$ is a path component, and $\left\{Y_{n}\right\}=\left\{\operatorname{Tot}_{n} \operatorname{map}\left(B V, \mathbb{F}_{p}^{\bullet} Y\right)_{\phi}\right\}$. The first step, then, is to learn how to find path components.
Remark 9. Let's take a break and do a little algebra. Let A be a finite \mathbb{F}_{p}-algebra, so that $x^{p}=x$ for all $x \in A$ (such as $\left.H^{0}\left(X ; \mathbb{F}_{p}\right)\right)$. Then

$$
A \cong \prod_{\operatorname{Hom}_{\mathrm{alg}\left(A, \mathbb{F}_{p}\right)}}=\mathbb{F}_{p}\left(\operatorname{Hom}_{\mathrm{alg}}\left(A, \mathbb{F}_{p}\right)\right)=\mathbb{F}_{p}^{\operatorname{Spec}(A)}
$$

Indeed, let $I \subseteq A$ be a prime ideal. Then $\mathbb{F}_{p} \rightarrow A / I$ makes A / I a finite-dimensional integral domain over \mathbb{F}_{p} in which $x^{p}=x$. But every element of A / I satisfies some minimal polynomial which divides $x^{p}-x$, so is in \mathbb{F}_{p} already, so $A / I \cong \mathbb{F}_{p}$. Thus I is maximal with residue field \mathbb{F}_{p}.

Let $K \in \mathcal{K}$; then

$$
\operatorname{Hom}_{\mathbb{F}_{p}-\operatorname{alg}}\left(\left(T_{V} K\right)^{0}, \mathbb{F}_{p}\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(T_{V} K, \mathbb{F}_{p}\right) \cong \operatorname{Hom}_{\mathcal{K}}\left(K, H^{*} B V\right)
$$

By the algebraic remark above, we get

$$
\left(T_{V} K\right)^{0} \cong \mathbb{F}_{p}^{\operatorname{Hom} \mathcal{K}}\left(K, H^{*} B V\right)
$$

If Y is a space of finite type, then

$$
H_{0} Y=\mathbb{F}_{p}\left[\pi_{0} Y\right]
$$

and

$$
H^{0} Y=\mathbb{F}_{p}\left(\pi_{0} Y\right)
$$

in other words,

$$
\pi_{0} Y=\operatorname{Hom}_{\mathbb{F}_{p}-\operatorname{alg}}\left(H^{0} Y, \mathbb{F}_{p}\right)
$$

Proposition 10. If (Z, ω) is a model for $\operatorname{map}(B V, Y)$ then $\pi_{0} Z \cong \operatorname{Hom}_{\mathcal{K}}\left(H^{*} Y, H^{*} B V\right)$.

