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Let’s recall some things from last time.
Definition 1. Let Y be so that H*Y is finite type. Then (Z,w) is a model for map(BV,Y) if
1. Z is a space of finite type.
2. w: BV xZ —=Y is amap so that w* : H*Z — Ty H*Y is an isomorphism.
Theorem 2. If (Z,w) is a model for map(BV,Y), then (Fp)ooZ = map(BV, (Fp)aY).
Lemma 3. 1. If Z is a space, then H°Z = IF;C’Z,
2. (TyH*Y)? = Fromx(HT Y HTBY)

In particular, if (Z,w) is a model for map(BV,Y), then moZ = Homx (H*Y, H*BV).
Recall (or use 1 of the lemma above to show) that if Z is of finite type, y € myZ, and Z, C Z is the
associated path component, then H*Z, = F, ® yo H*Z, tensoring over the map

H°Z =Fr? X F{v} =T,
If (Z,w) is a model as above, and ¢ € Homg(H*Y, H*BV') = myZ, then
H*Zy =T, @1y meyy Ty H'Y = T H'Y.
Lemma 4. Let L € K have L° 2 F,. Then
Homy(T{H*Y, L) = Homy ;4 (H*'Y, H*BV ® L),
where the right-hand side means diagrams of the following form:

HY H*BV ® L

T

H*BV = H*BV ® L°.

This almost doesn’t need proof, so I won’t give one.
For example, take L = H,S%, t > 1. We get

Homy (T H*Y, H*S') = Homy 4 (H*Y, H* BV ® H*S"). (1)
This can be derived, but first, we need to establish some hypotheses.

Lemma 5. Let GoH*Y — H*Y be the standard resolution of H*Y in K. Then T$G.H*Y — T$H*Y.

(What’s ‘resolution’ mean? It has to be a simplicial object; at each level, it’s the cohomology of a product
of Eilenberg-Mac Lane spaces; and it has to be exact, meaning that its simplicial homotopy is just H*Y in
degree zero.)



Proof. G : K — K is UF, where U is the free unstable algebra functor and F' is the forgetful functor to
graded vector spaces. So this is of the form U (D F(n,)), and

TyU (@ F(na)) —UTy (@ F(na)> —U (@ F(mﬁ)) .

We need only check 7w, Ty GoH*Y = Ty, H*Y, which follows from the above because m,GoH*Y = H*Y and
Ty is exact. To get the result for T$7 tensor down, which is just picking out a summand and so is exact. [

Now apply this and to get
Ext,SC(T{fH*Y, H*S") = Extic,,(H"Y, H*BV ® H*S") = R® Deryc(H*Y, X' BV ).

Proof of Theorem[3 Let A, B, C be spaces. We claim there’s a map A x F,B — F,(A x B): this is just
A xF,B — F,A x F,B, composed with the ‘bilinear’ map F,A x F,B — F,(A x B), which is morally
F,AQF,B.

Thus, given a map A x B — C, we get

AxF,B—TF,(AxB)—=TF,C,

which has an adjoint
F,B — map(A,F,C).

That was all pretty formal’ now take a model w : BVtimesZ — Y so that w* : H*Z 2 Ty H*Y. So we
get a map of cosimplicial spaces
(Fp)*Z — map(BV,F}Y).

Let ¢ € m9Z = Homy (H*Y, H*BV') be a basepoint. This gives a based morphism of cosimplicial spaces.
Take the component associated to ¢. We have a map

mim(Fp)* Zy — mim map(BV,F}Y ).

We need this to be an isomorphism for ¢ — s > 0. The Bousfield-Kan spectral sequence will then give the
result.
The key point here is just that Ty, is exact and commutes with tensor products. We have isomorphisms

7wy Zy = Exty (H* Zy, H*S")
= Exty (TOH*Y, H*S?)
= Exty o, (HY, H"BV @ H*S")
= m°m map(BV, (F})Y ).
The first and last lines come from the fact that, if W = F,Wj, then
mymap(Z, W)y = Homye ) (H*W, H*W @ Sh.
This concludes the proof. O

Let’s rewind. This all starts with Sullivan’s fixed point conjecture (now theorem). Let X be a finite
CW-complex and G a finite p-group (usually, the cyclic group of order p).

Theorem 6 (Sullivan conjecture).
(Fp)oo X = ((Fp)ooX) €.

This is nontrivial because the ordinary fixed points aren’t homotopy invariant, but the right-hand side
is; so under this finiteness hypothesis, the p-completion functor somehow creates homotopy-invariance.
We've already seen one case. If G =V an F,-vector space and it acts trivially, then the statement is

(Fp)ooX = map(BV, (F;D)OOX)-



This is a pretty good theorem; we’ll give Lannes’ proof, because it makes it look easy, while Carlsson’s
makes it look hard. We’'ll end today with some generalities.
Recall that if G is a finite group, and X is a G-space. Then we have a map

X% = mapg(x, X) — mapg(FG, X) =: X",

We can think of EG as a cofibrant replacement for the point in the category of G-spaces. Filtering EG by
skeleta gives a spectral sequence
H* (G, mX) = m_ o X1C,

If you think the above theorem is easy, try proving it, even in a very simple case, using this spectral sequence.
That was fixed points; now let’s do orbits. We have
Xuwa :EGXGX—)* xGX:X/G.
Here X x¢ Y is not a pullback, but the Borel construction
X xgY =X xY/(g9z,y) ~ (z,9y).
There is a fibration
X — EG xg X — BG,

and thus a Serre spectral sequence
H*(G,H'X) = H*™" Xyq.

Remark 7. The map from homotopy orbits to orbits is an equivalence when X is a free G-space, because this
means that X is a cofibrant G-space, and so the ordinary orbits are already derived. The map from fixed
points to homotopy fixed points is an equivalence when X is a fibrant G-space, which is a weirder condition.

Ezample 8. Let G = Z/p = C,,. This has the nice property that it only has two subgroups. Thus, X — X ¢
is a free Cp-space. Suppose that X ¢ C X has a G-invariant NDR neighborhood U (it has a deformation
retraction onto X¢). Then X = U UV where V = X — X% and there is a pushout diagram

(UNV)/G<~"EG xg (UNV) —= EG xcU — "> EG xg X6 == BG x X¢
| L]
V/G = EG xaV EG Xg X —— Xyna.

So the actual fixed points show up in a pushout diagram involving the homotopy orbits.



