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Let’s recall some things from last time.

Definition 1. Let Y be so that H∗Y is finite type. Then (Z, ω) is a model for map(BV, Y ) if

1. Z is a space of finite type.

2. ω : BV × Z → Y is a map so that ω̃∗ : H∗Z → TVH
∗Y is an isomorphism.

Theorem 2. If (Z, ω) is a model for map(BV, Y ), then (Fp)∞Z
∼→ map(BV, (Fp)∞Y ).

Lemma 3. 1. If Z is a space, then H0Z = Fπ0Z
p .

2. (TVH
∗Y )0 ∼= FHomK(H

∗Y,H∗BV )
p .

In particular, if (Z, ω) is a model for map(BV, Y ), then π0Z ∼= HomK(H∗Y,H∗BV ).
Recall (or use 1 of the lemma above to show) that if Z is of finite type, y ∈ π0Z, and Zy ⊆ Z is the

associated path component, then H∗Zy = Fp ⊗H0Z H
∗Z, tensoring over the map

H0Z = Fπ0Z
p

εy→ F{y}p = Fp.

If (Z, ω) is a model as above, and φ ∈ HomK(H∗Y,H∗BV ) = π0Z, then

H∗Zφ = Fp ⊗(TVH∗Y )0 TVH
∗Y =: TφVH

∗Y.

Lemma 4. Let L ∈ K have L0 ∼= Fp. Then

HomK(TφVH
∗Y,L) = HomK/φ(H∗Y,H∗BV ⊗ L),

where the right-hand side means diagrams of the following form:

H∗Y //

φ ((

H∗BV ⊗ L

��
H∗BV = H∗BV ⊗ L0.

This almost doesn’t need proof, so I won’t give one.
For example, take L = H∗S

t, t ≥ 1. We get

HomK(TφVH
∗Y,H∗St) ∼= HomK/φ(H∗Y,H∗BV ⊗H∗St). (1)

This can be derived, but first, we need to establish some hypotheses.

Lemma 5. Let G•H
∗Y → H∗Y be the standard resolution of H∗Y in K. Then TφVG•H

∗Y → TφVH
∗Y .

(What’s ‘resolution’ mean? It has to be a simplicial object; at each level, it’s the cohomology of a product
of Eilenberg-Mac Lane spaces; and it has to be exact, meaning that its simplicial homotopy is just H∗Y in
degree zero.)
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Proof. G : K → K is UF , where U is the free unstable algebra functor and F is the forgetful functor to
graded vector spaces. So this is of the form U (

⊕
F (nα)), and

TV U
(⊕

F (nα)
)

= UTV

(⊕
F (nα)

)
= U

(⊕
F (mβ)

)
.

We need only check π∗TVG•H
∗Y ∼= TVH

∗Y , which follows from the above because π∗G•H
∗Y ∼= H∗Y and

TV is exact. To get the result for TφV , tensor down, which is just picking out a summand and so is exact.

Now apply this and (1) to get

ExtsK(TφVH
∗Y,H∗St) ∼= ExtsK/φ(H∗Y,H∗BV ⊗H∗St) ∼= Rs DerK(H∗Y,ΣtBV )φ.

Proof of Theorem 2. Let A, B, C be spaces. We claim there’s a map A × FpB → Fp(A × B): this is just
A × FpB → FpA × FpB, composed with the ‘bilinear’ map FpA × FpB → Fp(A × B), which is morally
FpA⊗ FpB.

Thus, given a map A×B → C, we get

A× FpB → Fp(A×B)→ FpC,

which has an adjoint
FpB → map(A,FpC).

That was all pretty formal’ now take a model ω : BV timesZ → Y so that ω̃∗ : H∗Z ∼= TVH
∗Y . So we

get a map of cosimplicial spaces
(Fp)•Z → map(BV,F•pY ).

Let φ ∈ π0Z = HomK(H∗Y,H∗BV ) be a basepoint. This gives a based morphism of cosimplicial spaces.
Take the component associated to φ. We have a map

πsπt(Fp)•Zφ → πsπt map(BV,F•pY )φ.

We need this to be an isomorphism for t − s ≥ 0. The Bousfield-Kan spectral sequence will then give the
result.

The key point here is just that TV is exact and commutes with tensor products. We have isomorphisms

πsπtF•pZφ ∼= ExtsK(H∗Zφ, H
∗St)

∼= ExtsK(TφVH
∗Y,H∗St)

∼= ExtsK/φ(H∗Y,H∗BV ⊗H∗St)
∼= πsπt map(BV, (F•p)Y )φ.

The first and last lines come from the fact that, if W = FpW0, then

πt map(Z,W )φ ∼= HomK/φ(H∗W,H∗W ⊗ St).

This concludes the proof.

Let’s rewind. This all starts with Sullivan’s fixed point conjecture (now theorem). Let X be a finite
CW-complex and G a finite p-group (usually, the cyclic group of order p).

Theorem 6 (Sullivan conjecture).

(Fp)∞XG '→ ((Fp)∞X)hG.

This is nontrivial because the ordinary fixed points aren’t homotopy invariant, but the right-hand side
is; so under this finiteness hypothesis, the p-completion functor somehow creates homotopy-invariance.

We’ve already seen one case. If G = V an Fp-vector space and it acts trivially, then the statement is

(Fp)∞X ∼= map(BV, (Fp)∞X).
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This is a pretty good theorem; we’ll give Lannes’ proof, because it makes it look easy, while Carlsson’s
makes it look hard. We’ll end today with some generalities.

Recall that if G is a finite group, and X is a G-space. Then we have a map

XG = mapG(∗, X)→ mapG(EG,X) =: XhG.

We can think of EG as a cofibrant replacement for the point in the category of G-spaces. Filtering EG by
skeleta gives a spectral sequence

Hs(G, πtX)⇒ πt−sX
hG.

If you think the above theorem is easy, try proving it, even in a very simple case, using this spectral sequence.
That was fixed points; now let’s do orbits. We have

XhG = EG×G X → ∗×G X = X/G.

Here X ×G Y is not a pullback, but the Borel construction

X ×G Y = X × Y/(gx, y) ∼ (x, gy).

There is a fibration
X → EG×G X → BG,

and thus a Serre spectral sequence
Hs(G,HtX)⇒ Hs+tXhG.

Remark 7. The map from homotopy orbits to orbits is an equivalence when X is a free G-space, because this
means that X is a cofibrant G-space, and so the ordinary orbits are already derived. The map from fixed
points to homotopy fixed points is an equivalence when X is a fibrant G-space, which is a weirder condition.

Example 8. Let G = Z/p = Cp. This has the nice property that it only has two subgroups. Thus, X −XG

is a free Cp-space. Suppose that XG ⊆ X has a G-invariant NDR neighborhood U (it has a deformation
retraction onto XG). Then X = U ∪ V where V = X −XG, and there is a pushout diagram

(U ∩ V )/G

��

EG×G (U ∩ V )
∼oo

��

// EG×G U
∼ //

��

EG×G XG BG×XG

V/G EG×G V
∼oo // EG×G X XhG.

So the actual fixed points show up in a pushout diagram involving the homotopy orbits.
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