Lecture 18: Proof of Lannes' theorem

Paul VanKoughnett

November 12, 2014

Let's recall some things from last time.
Definition 1. Let Y be so that $H^{*} Y$ is finite type. Then (Z, ω) is a model for $\operatorname{map}(B V, Y)$ if

1. Z is a space of finite type.
2. $\omega: B V \times Z \rightarrow Y$ is a map so that $\widetilde{\omega}^{*}: H^{*} Z \rightarrow T_{V} H^{*} Y$ is an isomorphism.

Theorem 2. If (Z, ω) is a model for $\operatorname{map}(B V, Y)$, then $\left(\mathbb{F}_{p}\right)_{\infty} Z \xrightarrow{\sim} \operatorname{map}\left(B V,\left(\mathbb{F}_{p}\right)_{\infty} Y\right)$.
Lemma 3. 1. If Z is a space, then $H^{0} Z=\mathbb{F}_{p}^{\pi_{0} Z}$.
2. $\left(T_{V} H^{*} Y\right)^{0} \cong \mathbb{F}_{p}^{\operatorname{Hom}_{\mathcal{K}}\left(H^{*} Y, H^{*} B V\right)}$.

In particular, if (Z, ω) is a model for $\operatorname{map}(B V, Y)$, then $\pi_{0} Z \cong \operatorname{Hom}_{\mathcal{K}}\left(H^{*} Y, H^{*} B V\right)$.
Recall (or use 1 of the lemma above to show) that if Z is of finite type, $y \in \pi_{0} Z$, and $Z_{y} \subseteq Z$ is the associated path component, then $H^{*} Z_{y}=\mathbb{F}_{p} \otimes_{H^{0} Z} H^{*} Z$, tensoring over the map

$$
H^{0} Z=\mathbb{F}_{p}^{\pi_{0} Z} \xrightarrow{\epsilon_{y}} \mathbb{F}_{p}^{\{y\}}=\mathbb{F}_{p}
$$

If (Z, ω) is a model as above, and $\phi \in \operatorname{Hom}_{\mathcal{K}}\left(H^{*} Y, H^{*} B V\right)=\pi_{0} Z$, then

$$
H^{*} Z_{\phi}=\mathbb{F}_{p} \otimes_{\left(T_{V} H^{*} Y\right)^{0}} T_{V} H^{*} Y=: T_{V}^{\phi} H^{*} Y
$$

Lemma 4. Let $L \in \mathcal{K}$ have $L^{0} \cong \mathbb{F}_{p}$. Then

$$
\operatorname{Hom}_{\mathcal{K}}\left(T_{V}^{\phi} H^{*} Y, L\right)=\operatorname{Hom}_{\mathcal{K} / \phi}\left(H^{*} Y, H^{*} B V \otimes L\right)
$$

where the right-hand side means diagrams of the following form:

This almost doesn't need proof, so I won't give one.
For example, take $L=H_{*} S^{t}, t \geq 1$. We get

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{K}}\left(T_{V}^{\phi} H^{*} Y, H^{*} S^{t}\right) \cong \operatorname{Hom}_{\mathcal{K} / \phi}\left(H^{*} Y, H^{*} B V \otimes H^{*} S^{t}\right) \tag{1}
\end{equation*}
$$

This can be derived, but first, we need to establish some hypotheses.
Lemma 5. Let $G_{\bullet} H^{*} Y \rightarrow H^{*} Y$ be the standard resolution of $H^{*} Y$ in \mathcal{K}. Then $T_{V}^{\phi} G \bullet H^{*} Y \rightarrow T_{V}^{\phi} H^{*} Y$.
(What's 'resolution' mean? It has to be a simplicial object; at each level, it's the cohomology of a product of Eilenberg-Mac Lane spaces; and it has to be exact, meaning that its simplicial homotopy is just $H^{*} Y$ in degree zero.)

Proof. $G: \mathcal{K} \rightarrow \mathcal{K}$ is $U F$, where U is the free unstable algebra functor and F is the forgetful functor to graded vector spaces. So this is of the form $U\left(\bigoplus F\left(n_{\alpha}\right)\right)$, and

$$
T_{V} U\left(\bigoplus F\left(n_{\alpha}\right)\right)=U T_{V}\left(\bigoplus F\left(n_{\alpha}\right)\right)=U\left(\bigoplus F\left(m_{\beta}\right)\right)
$$

We need only check $\pi_{*} T_{V} G_{\bullet} H^{*} Y \cong T_{V} H^{*} Y$, which follows from the above because $\pi_{*} G_{\bullet} H^{*} Y \cong H^{*} Y$ and T_{V} is exact. To get the result for T_{V}^{ϕ}, tensor down, which is just picking out a summand and so is exact.

Now apply this and (1) to get

$$
\operatorname{Ext}_{\mathcal{K}}^{s}\left(T_{V}^{\phi} H^{*} Y, H^{*} S^{t}\right) \cong \operatorname{Ext}_{\mathcal{K} / \phi}^{s}\left(H^{*} Y, H^{*} B V \otimes H^{*} S^{t}\right) \cong R^{s} \operatorname{Der}_{\mathcal{K}}\left(H^{*} Y, \Sigma^{t} B V\right)_{\phi}
$$

Proof of Theorem 2. Let A, B, C be spaces. We claim there's a map $A \times \mathbb{F}_{p} B \rightarrow \mathbb{F}_{p}(A \times B)$: this is just $A \times \mathbb{F}_{p} B \rightarrow \mathbb{F}_{p} A \times \mathbb{F}_{p} B$, composed with the 'bilinear' map $\mathbb{F}_{p} A \times \mathbb{F}_{p} B \rightarrow \mathbb{F}_{p}(A \times B)$, which is morally $\mathbb{F}_{p} A \otimes \mathbb{F}_{p} B$.

Thus, given a map $A \times B \rightarrow C$, we get

$$
A \times \mathbb{F}_{p} B \rightarrow \mathbb{F}_{p}(A \times B) \rightarrow \mathbb{F}_{p} C
$$

which has an adjoint

$$
\mathbb{F}_{p} B \rightarrow \operatorname{map}\left(A, \mathbb{F}_{p} C\right)
$$

That was all pretty formal' now take a model $\omega: B \operatorname{times} Z \rightarrow Y$ so that $\widetilde{\omega}^{*}: H^{*} Z \cong T_{V} H^{*} Y$. So we get a map of cosimplicial spaces

$$
\left(\mathbb{F}_{p}\right)^{\bullet} Z \rightarrow \operatorname{map}\left(B V, \mathbb{F}_{p}^{\bullet} Y\right)
$$

Let $\phi \in \pi_{0} Z=\operatorname{Hom}_{\mathcal{K}}\left(H^{*} Y, H^{*} B V\right)$ be a basepoint. This gives a based morphism of cosimplicial spaces. Take the component associated to ϕ. We have a map

$$
\pi^{s} \pi_{t}\left(\mathbb{F}_{p}\right)^{\bullet} Z_{\phi} \rightarrow \pi^{s} \pi_{t} \operatorname{map}\left(B V, \mathbb{F}_{p}^{\bullet} Y\right)_{\phi}
$$

We need this to be an isomorphism for $t-s \geq 0$. The Bousfield-Kan spectral sequence will then give the result.

The key point here is just that T_{V} is exact and commutes with tensor products. We have isomorphisms

$$
\begin{aligned}
\pi^{s} \pi_{t} \mathbb{F}_{p}^{\bullet} \mathbb{Z}_{\phi} & \cong \operatorname{Ext}_{\mathcal{K}}^{s}\left(H^{*} Z_{\phi}, H^{*} S^{t}\right) \\
& \cong \operatorname{Ext}_{\mathcal{K}}^{s}\left(T_{V}^{\phi} H^{*} Y, H^{*} S^{t}\right) \\
& \cong \operatorname{Ext}_{\mathcal{K} / \phi}^{s}\left(H^{*} Y, H^{*} B V \otimes H^{*} S^{t}\right) \\
& \cong \pi^{s} \pi_{t} \operatorname{map}\left(B V,\left(\mathbb{F}_{p}^{\bullet}\right) Y\right)_{\phi}
\end{aligned}
$$

The first and last lines come from the fact that, if $W=\mathbb{F}_{p} W_{0}$, then

$$
\pi_{t} \operatorname{map}(Z, W)_{\phi} \cong \operatorname{Hom}_{\mathcal{K} / \phi}\left(H^{*} W, H^{*} W \otimes S^{t}\right)
$$

This concludes the proof.
Let's rewind. This all starts with Sullivan's fixed point conjecture (now theorem). Let X be a finite CW-complex and G a finite p-group (usually, the cyclic group of order p).

Theorem 6 (Sullivan conjecture).

$$
\left(\mathbb{F}_{p}\right)_{\infty} X^{G} \xlongequal{\simeq}\left(\left(\mathbb{F}_{p}\right)_{\infty} X\right)^{\mathrm{h} G}
$$

This is nontrivial because the ordinary fixed points aren't homotopy invariant, but the right-hand side is; so under this finiteness hypothesis, the p-completion functor somehow creates homotopy-invariance.

We've already seen one case. If $G=V$ an \mathbb{F}_{p}-vector space and it acts trivially, then the statement is

$$
\left(\mathbb{F}_{p}\right)_{\infty} X \cong \operatorname{map}\left(B V,\left(\mathbb{F}_{p}\right)_{\infty} X\right)
$$

This is a pretty good theorem; we'll give Lannes' proof, because it makes it look easy, while Carlsson's makes it look hard. We'll end today with some generalities.

Recall that if G is a finite group, and X is a G-space. Then we have a map

$$
X^{G}=\operatorname{map}_{G}(*, X) \rightarrow \operatorname{map}_{G}(E G, X)=: X^{\mathrm{h} G}
$$

We can think of $E G$ as a cofibrant replacement for the point in the category of G-spaces. Filtering $E G$ by skeleta gives a spectral sequence

$$
H^{s}\left(G, \pi_{t} X\right) \Rightarrow \pi_{t-s} X^{\mathrm{h} G}
$$

If you think the above theorem is easy, try proving it, even in a very simple case, using this spectral sequence.
That was fixed points; now let's do orbits. We have

$$
X_{\mathrm{h} G}=E G \times_{G} X \rightarrow * \times_{G} X=X / G
$$

Here $X \times_{G} Y$ is not a pullback, but the Borel construction

$$
X \times_{G} Y=X \times Y /(g x, y) \sim(x, g y)
$$

There is a fibration

$$
X \rightarrow E G \times_{G} X \rightarrow B G
$$

and thus a Serre spectral sequence

$$
H^{s}\left(G, H^{t} X\right) \Rightarrow H^{s+t} X_{\mathrm{h} G}
$$

Remark 7. The map from homotopy orbits to orbits is an equivalence when X is a free G-space, because this means that X is a cofibrant G-space, and so the ordinary orbits are already derived. The map from fixed points to homotopy fixed points is an equivalence when X is a fibrant G-space, which is a weirder condition. Example 8. Let $G=\mathbb{Z} / p=C_{p}$. This has the nice property that it only has two subgroups. Thus, $X-X^{G}$ is a free C_{p}-space. Suppose that $X^{G} \subseteq X$ has a G-invariant NDR neighborhood U (it has a deformation retraction onto $\left.X^{G}\right)$. Then $X=U \cup V$ where $V=X-X^{G}$, and there is a pushout diagram

So the actual fixed points show up in a pushout diagram involving the homotopy orbits.

