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We’re discussing the Sullivan conjecture, which says that if π is a p-group, and X a finite CW-complex
with a π-action, then

(Fp)∞(Xπ) ' ((Fp)∞X)hπ.

The crucial case is π = Z/p = Cp. We could prove this right now, but it wouldn’t be very enlightening.
Instead, we’ll work some examples.

Recall that if G acts on X, we have maps

XG → mapG(EG,X) = XhG

and
X/G ← EG×G X = XhG.

We also have a fiber sequence
X → EG×G X → BG.

Last itme, we noted that if V = X −XG was a free G-space, and XG ⊆ U a G-NDR pair, then

U ∩ V //

��

U

��
V // X

was a G-homotopy pushout. Taking homotopy G-orbits then gives a pushout

(U ∩ V )/G //

��

BG×XG

��
EG×G V // EG×G X.

Watch out: although EG×G X is homotopy invariant, this square usually isn’t.
For example, say G = Z, generated by τ , and X = R with the G-action τ(x) = x + 1. This has a

non-equivariant homotopy equivalence to Y = ∗ with the trivial G-action. In X, we have XG = ∅, which we
might as well take to be U , and we get the square

∅ //

��

∅

��
R/Z = EG×G R EG×G R.

For Y , we have Y G = Y and we instead take V = ∅. The square is

∅ //

��

EG×G ∗ = S1

��
∅ // EG×G ∗.
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We get two models for BG, which are equivalent but very nontrivially so: it’s an equivalence of the form

S1 ' R/G EG×G Roo ' // EG×G ∗ BZ ∼= S1

[y] (x, y)�oo � // (x, ∗) � // [x].

Example 1. Let G = C2 = {1, τ}. Let Di+1 ⊆ Ri+1 be the unit disk, so ∂Di+1 = Si. We have

Si+j+1 = ∂Di+j+2 = ∂(Di+1 ×Dj+1) = Si ×Dj+1 ∪Di+1 × Sj .

The intersection is Si ×Dj+1 ∩Di+1 × Sj = Si × Sj . We get a homotopy pushout diagram

Si × Sj //

��

Si ×Dj+1

��
Di+1 × Sj // Si+j+1.

(1)

If you’re an old-fashioned homotopy theorist, you just proved that Si+j+1 is the join of Si and Sj .
Now let’s make this C2-equivariant. Let C2 act on Di+1 × Dj+1 by τ(x, y) = (−x, y). Thus, τ |Si is

the antipodal map, which is fixed-point free and has degree (−1)i+1; τ |Sj is the identity map, with degree
1. Using the Mayer-Vietoris sequence, we can show that τ has degree (−1)i+1 on Si+j+1. Finally, (1) is a
C2-equivariant diagram.

Remark 2. The Serre spectral sequence

H∗(C2, H
∗Si+j+1)⇒ H∗(EC2 ×C2

Si+j+1)

only depends on i mod 2. If i ≡ 1 (mod 2), then (−1)i+1 is odd, and the E2 page of the spectral sequence
is a copy of H∗(BC2,Z) ∼= Z[x2]/(2x) on each of the rows q = 0 and q = i+ j + 1. Si+j+1 has a fixed point,
so there’s a section to EC2 ×C2

Si+j+1 → BC2, which means that there can’t be any differentials, and the
spectral sequence collapses here. One might guess that

EC2 ×C2
Si+j+1 ' BC2 × Si+j+1.

In fact, this is false, but one needs the diagram (1) to do it. Indeed, the homotopy orbits of (1) are

(Si × Sj)hC2
//

��

(Di+1 × Sj)hC2

��
(Si ×Dj+1)hC2

// (Si+j+1)hC2 .

The action on Si × Sj and Si × Dj+1 is free, so the homotopy orbits are the orbits. On the other hand,
Di+1 × Sj is C2-homotopy equivalent to Sj with the trivial action. Thus, the diagram is

RP i × Sj

��

(Si × Sj)hC2

'oo //

��

(Di+1 × Sj)hC2

��

' // RP∞ × Sj

RP i ×Dj+1 (Si ×Dj+1)hC2
//'oo (Si+j+1)hC2

.

Notice that the left-hand column is all finite complexes, which are ignored by the T -functor; the upper right
corner is the fixed points, and the lower right corner is the homotopy orbits.

Lemma 3. The top map RP i × Sj → RP∞ × Sj is homotopic to η × 1, where η : RP i → RP∞ is the
inclusion map.
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This isn’t hard to check: the map is clearly the identity on the Sj factor, and then you have to sit down
and figure out what it does to the free part, just as we did with BZ = S1 earlier.

Now, the pushout square on homotopy orbits gives a Mayer-Vietoris sequence for H∗(EC2 ×C2
Si+j+1):

· · · → H∗(Si+j+1
hC2

)→ H∗(RP i)×H∗(RP∞ × Sj)→ H∗(RP i × Sj)→ · · · .

If i is odd, then the orientation class Z ∈ Hi+j(RP i×Sj) is not in the image of H∗(RP i)×H∗(RP∞×Sj),
so it gives something in Hi+j+1(Si+j+1

hC2
), which we saw in the spectral sequence. If i is even, then the

Mayer-Vietoris splits up into short exact sequences.
For the Sullivan conjecture for π = Cp = Z/p, we’re going to work with the same picture:

(U ∩ V )/Cp ECp ×Cp X
Cp = BCp ×XCp

��
V/Cp // ECp ×Cp

X.

Here are the crucial steps: we’ll use Lannes’ comparison theorem calculate map(BCp, ECp×Cp
X) and relate

it to map(BCp, BCp ×XCp). Since XCp is a finite complex, we’ll get

map(BCp, BCp ×XCp) = map(BCp, BCp)×map(BCp, X
Cp) ' XCp ,

at least up to p-completion. Then the previous arguments will finish the result.
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