
Lecture 2: Admissible sequences

October 1, 2014

Last time, we introduced the Steenrod squares. These were natural group homomorphisms

Sqi : HnX → Hn+iX

on the mod 2 cohomology of a space X, subject to some axioms. First, the squares are natural, meaning
that diagrams of the form

HnY
Sqi

//

f∗

��

Hn+iY

f∗

��
HnX

Sqi

// Hn+iY

commute, where f : X → Y is a map of spaces.
For example, suppose that X and Y are finite type, meaning that dimHnX <∞ for all n. Then there’s

a Künneth isomorphism
H∗X ⊗H∗Y → H∗(X × Y ).

We’ll write x × y for the image of x ⊗ y under this map. The projection map p1 : X × Y → X induces
p∗1 : H∗X → H∗(X × Y ) sending a 7→ a× 1. By naturality, Sqi(a) 7→ Sqi(a× 1). Thus, in H∗(X × Y ),

Sqi(x× y) = Sqi((x× 1) ∪ (1× y)) =
∑

j+k=i

Sqj(x× 1) ∪ Sqk(1× y)

by the Cartan formula, so naturality has given us

Sqi(x× y) =
∑

j+k=i

(Sqj x)× (Sqk y).

Another property of the squares is the Adem relations:

Sqi Sqj =
∑
2t≤i

(
j − t− 1

i− 2t

)
Sqi+j−t Sqt .

Example 1.

Sq4 Sq8 =

2∑
t=0

(
7− t
4− 2t

)
Sq12−t Sqt

=

(
7

4

)
Sq12 +

(
6

2

)
Sq11 Sq1 +

(
5

3

)
Sq10 Sq2

= Sq12 + Sq11 Sq1 .

We note that 4 < 8, but the exponents on the right-hand side decrease in each monomial.

Definition 2. Sqi1 · · · Sqis is admissible if ik ≥ 2ik+1 for each 1 ≤ k < s.
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For example, Sq6 Sq3 Sq1 is admissible.
By the Adem relations, if Sqi Sqj is not admissible, we can rewrite it as a sum of admissible terms. More

explicitly, if i < 2j, then the Adem relations rewrite Sqi Sqj as a sum of terms of the form Sqi+j−t Sqt with
t ≤ i/2. Thus, we have

2t ≤ i = i/2 + i/2 < i/2 + j ≤ i+ j − t.

More generally,

Proposition 3. If Sqi1 · · · Sqis is not admissible, it can be rewritten as a sum of admissibles.

The proof will be given below.

Definition 4. The Steenrod algebra A is the graded (associative, noncommutative) tensor algebra over
F2 on the Sqi, where |Sqi | = i, mod the Adem relations.

Example 5. Here’s a basis for A in low degrees:

degree basis
0 1
1 Sq1

2 Sq2, (Sq1 Sq1 = 0)
3 Sq3 = Sq1 Sq2, Sq2 Sq1

4 Sq4, Sq3 Sq1 = Sq2 Sq2

5 Sq5, Sq4 Sq1

6 Sq6, Sq5 Sq1, Sq4 Sq2

We can now rewrite Proposition 3.

Proposition 6. The admissible monomials form a basis for the Steenrod algebra.

Proof. First, let’s show that they span. If I = (i1, . . . , is), write SqI = Sqi1 · · · Sqis . Order the symbols I
lexicographically, so that (7, 0) > (6, 1) > (5, 2). By the Adem relations, if SqI is not admissible, we can
write SqI =

∑
J aJ SqJ , where all J > I. This process preserves degrees, and there are only finitely many

monomials in each degree, so after doing this a finite number of times, we must get to a linear combination
of admissibles.

Now let’s show that they’re linearly independent. Look at the space X = (RP∞)×n. Then H∗X =
F2[x1, . . . , xn]. Now write y = x1 · · ·xn.

Exercise 7. The elements SqI(x1 · · ·xn) ∈ H∗X, with I admissible and e(I) := i1 − i2 − · · · − is ≤ n, is
linearly independent.

Now the Steenrod algebra acts on the cohomology of any space, so since these things are linearly inde-
pendent in some space, they’re linearly independent in A.

Another fact about the Steenrod operations was the unstable condition: if i > |x|, then Sqi x = 0. In
particular, Sqi Sqj(x) = 0 if i > |Sqj x| = |x|+ j, i. e. if i− j > |x|.

Definition 8. The excess of an sequence I is

e(I) = i1 − i2 − · · · − is.

If e(I) > |x|, then SqI(x) = 0, by the same logic.
If I is admissible, it’s convenient to write

e(I) = (i1 − 2i2) + · · ·+ (is−1 − 2is),

a sum of positive numbers measuring how admissible I is.
Let’s define

ModA = the category of (graded) left A-modules,
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and
U ⊆ ModA = the full subcategory of unstable modules,

those modules M such that Sqi(x) = 0 if |x| < i for x ∈M . Finally,

K = the category of unstable algebras over A.

An unstable algebra is an unstable module with a graded algebra structure, such that Sq|x|(x) = x2, where
the morphisms preserve that A-module and algebra structures. The functor H∗ has image in K.

There are adjunctions

K
U

� U
Ω∞

� ModA.

The right adjoints are the obvious forgetful functors; U stands for ‘universal enveloping algebra’; Ω∞ refers
to the infinite loop space functor from topology. What does this adjunction thing mean? Well, if M ∈ U
and N ∈ ModA, then

HomA(N,M) ∼= HomU (Ω∞N,M).

Thus, Ω∞N should be the free unstable A-module with a map from N , which should be

Ω∞N = N/{Sqi x : i > |x|}.

Exercise 9. Show that {Sqi x : i > |x|} is, in fact, a sub-A-module of N , using the Adem relations.

Now let’s construct U . Let V be a graded vector space over F2. The symmetric algebra over V is

S(V ) =
⊕
i≥0

V ⊗n/Σn.

(Note we’re constructing this to be graded commutative, not ordinarily commutative.) If x1, . . . , xn is a
basis, then S(V ) ∼= F2[x1, . . . , xn]. The symmetric algebra has the following universal property: any map
V → B to a graded commutative algebra B extends uniquely to an algebra map S(V )→ B.

In particular, if M ∈ U , then we define U(M) = S(M)/(Sq|x|+x2).

Lemma 10. Thus constructed, U(M) ∈ K.

Exercise 11. Prove this. You need to show that the ideal (Sq|x|+x2) is closed under the Steenrod action.

Theorem 12 (Serre’s thesis). If K(F2, n) is an Eilenberg-Mac Lane space, then the natural map

UΩ∞ΣnA → H∗K(F2, n),

induced from the map of A-modules
ΣnA → H∗K(F2, n)

that sends a 7→ a(ιn), is an isomorphism.

(Notation: the Σn is a shift up by n degrees, and ιn ∈ HnK(F2, n) is the fundamental class.)
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