Lecture 20: Orbits and homotopy orbits

Paul VanKoughnett

November 17, 2014

Recall that we have C_{2} acting on S^{i+j+1} by the antipodal map on the first $(i+1)$ coordinates. We wrote the homotopy orbits as a pushout square

In mod 2 cohomology, there's a short exact sequence

We need to compute the kernel of the bottom map. We have $(x, x)^{n}=\left(x^{n}, x^{n}\right) \mapsto 0$, and $\left(0, x^{n} y\right) \mapsto x^{n} y$, which is 0 for $n \geq j+1$. Let $\mu=(x, x)$, and $z=\left(0, x^{j+1} y\right)$. We get

$$
H^{*}\left(E C_{2} \times_{C_{2}} S^{i+j+1}\right) \cong \mathbb{F}_{2}[\mu] \otimes \Lambda(z)
$$

The Steenrod operations act by $\mathrm{Sq}^{i} \mu^{j}=\binom{j}{i} \mu^{i+j}$, and $\mathrm{Sq}^{i}(z)=\mathrm{Sq}^{i}\left(x^{j+1} y\right)=\binom{j+1}{i} x^{i+j+1} y$. So, although this cohomology is the same as that of $H^{*}\left(\mathbb{R} P^{\infty} \times S^{i+j+1}\right)$ as a ring, it's generally not the same as an unstable algebra.

The Sullivan conjecture, in its most basic form, is

$$
\left(\mathbb{F}_{p}\right)_{\infty}\left(X^{\mathbb{Z} / p}\right) \simeq\left(\left(\mathbb{F}_{p}\right)_{\infty} X\right)^{\mathrm{h} \mathbb{Z} / p}
$$

To prove this, we're going to calculate $\operatorname{map}\left(B \mathbb{Z} / p, E \mathbb{Z} / p \times_{\mathbb{Z} / p}\left(\mathbb{F}_{p}\right)_{\infty} X\right)$, and see what we get.
There's a fiber sequence

$$
X \rightarrow E \mathbb{Z} / p \times_{\mathbb{Z} / p} X=X_{\mathrm{h} \mathbb{Z} / p} \rightarrow B \mathbb{Z} / p
$$

so we get a map

$$
\operatorname{map}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z}}\right) \rightarrow \operatorname{map}(B \mathbb{Z} / p, B \mathbb{Z} / p) \simeq \coprod_{\phi: \mathbb{Z} / p \rightarrow \mathbb{Z} / p} B \mathbb{Z} / p
$$

To get the expression on the right, note that ϕ is the same as a representation of \mathbb{Z} / p in itself, and its centralizer is all of \mathbb{Z} / p. Pulling this decomposition back, we can break $\operatorname{map}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z} / p}\right)$ up as a coproduct over ϕ of components which we'll call $\operatorname{map}_{\phi}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z}} p\right)$. These components are not created equal. If $\phi=0$, we have a fiber sequence

$$
\operatorname{map}(B \mathbb{Z} / p, X) \rightarrow \operatorname{map}_{0}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z} / p}\right) \rightarrow B \mathbb{Z} / p=\operatorname{map}_{0}(B \mathbb{Z} / p, B \mathbb{Z} / p)
$$

where $\operatorname{map}(B \mathbb{Z} / p, X)$ is the fiber over $\operatorname{map}(B \mathbb{Z} / p, *)=*$. If X is finite, then $\operatorname{map}(B \mathbb{Z} / p, X) \simeq X$, and we might guess that $\operatorname{map}_{0}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z} / p}\right) \simeq X_{\mathrm{h} \mathbb{Z} / p}$.

If $\phi \neq 0$, the basepoint no longer lives in the ϕ component of $\operatorname{map}(B \mathbb{Z} / p, B \mathbb{Z} / p)$. Instead, we pick a basepoint $\{\phi\}$, and let $F_{\phi} \subseteq \operatorname{map}_{\phi}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z} / p}\right)$ be the fiber. This is the space of maps

For simplicity, let's say $\pi_{1} X=0$. By covering space theory,

$$
F_{\phi}=\operatorname{map}_{\mathbb{Z} / p}(E \mathbb{Z} / p, E \mathbb{Z} / p \times X) \simeq X^{\mathrm{h} \mathbb{Z} / p}
$$

This is very different than the case $\phi=0$. It is independent of ϕ, but the equivalence isn't - it's a matter of choosing a basepoint of $B \mathbb{Z} / p$, which changes the mapping space by conjugation.

We've gotten the homotopy fixed points $X^{\mathrm{h} \mathbb{Z} / p}$ as fibers living inside $\operatorname{map}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z} / p}\right)$. Now we'll use Lannes' theorem to calculate $\operatorname{map}\left(B \mathbb{Z} / p,\left(\left(\mathbb{F}_{p}\right)_{\infty} X\right)_{\mathrm{h} \mathbb{Z} / p}\right)$. This requires us to produce a model

$$
\omega: B \mathbb{Z} / p \times Z \rightarrow X_{\mathrm{h} \mathbb{Z} / p}
$$

so that the adjoint map

$$
\widetilde{\omega}_{*}: H^{*} Z \leftarrow T H^{*} X_{\mathrm{h} \mathbb{Z} / p}
$$

is an isomorphism.
Assume that X is finite. We'll let

$$
Z=X_{\mathrm{h} \mathbb{Z} / p} \sqcup \coprod_{\phi \neq 0} B \mathbb{Z} / p \times X^{\mathbb{Z} / p}
$$

The map ω is defined on each component as follows. On the zero component, we just take the projection

$$
B \mathbb{Z} / p \times X_{\mathrm{h} \mathbb{Z} / p} \rightarrow X_{\mathrm{h} \mathbb{Z} / p}
$$

The adjoint map $X_{\mathrm{h} \mathbb{Z} / p} \rightarrow \operatorname{map}\left(B \mathbb{Z} / p, X_{\mathrm{h} \mathbb{Z} / p}\right)$ sends x to the constant map to x. On a component corresponding to $\phi \neq 0, \omega$ is

$$
B \mathbb{Z} / p \times\left(B \mathbb{Z} / p \times X^{\mathbb{Z} / p}\right) \rightarrow B \mathbb{Z} / p \times X^{\mathbb{Z} / p} \subseteq E \mathbb{Z} / p \times_{\mathbb{Z} / p} X
$$

defined by $(a, b, x) \mapsto(\phi(a)+b, x)$.
We need to show that $\widetilde{\omega}^{*}$ is an isomorphism. This requires us to calculate $T H^{*} X_{\mathrm{h} \mathbb{Z} / p}$. Recall that $H^{*} B \mathbb{Z} / p \cong \widetilde{H}^{*} B \mathbb{Z} / p \oplus \mathbb{F}_{p}$, so

$$
\operatorname{Hom}_{\mathcal{U}}(T K, L) \cong \operatorname{Hom}_{\mathcal{U}}\left(K, \widetilde{H}^{*} B \mathbb{Z} / p \otimes L\right) \times \operatorname{Hom}_{\mathcal{U}}(K, L) \cong \operatorname{Hom}_{\mathcal{U}}(\bar{T} K \times K, L)
$$

where we've defined \bar{T} to be left adjoint to $\widetilde{H}^{*} B \mathbb{Z} / p \otimes \cdot$. If K is finite, we know already that $T K=K$, so $\bar{T} K=0$.

Let $U \supseteq X^{\mathbb{Z} / p}$ be a \mathbb{Z} / p-NDR. (We'd have to check that these exist.) There's a homotopy pushout

The spaces on the left-hand side are finite, so \bar{T} kills them; \bar{T} is also exact, so we get
Proposition 1.

$$
\bar{T} H^{*} X_{\mathrm{h} \mathbb{Z} / p} \cong \bar{T} H^{*}\left(B \mathbb{Z} / p \times X^{\mathbb{Z} / p}\right)
$$

In other words,

$$
T H^{*} X_{\mathrm{h} \mathbb{Z} / p}=H^{*} X_{\mathrm{h} \mathbb{Z} / p} \oplus \bar{T} H^{*}\left(B \mathbb{Z} / p \times X^{\mathrm{h} \mathbb{Z} / p}\right)
$$

Hopefully this is starting to look familiar.
We calculate that $T\left(H^{*} B \mathbb{Z} / p \otimes H^{*} X^{\mathbb{Z} / p}\right)=T\left(H^{*} B \mathbb{Z} / p\right) \otimes H^{*} X^{\mathbb{Z} / p}$, since $T(A \otimes B)=T(A) \otimes T(B)$ and $X^{\mathbb{Z} / p}$ is finite. And, of course, $T\left(H^{*} B \mathbb{Z} / p\right) \cong H^{*} B \mathbb{Z} / p \times \prod_{\phi \neq 0} H^{*} B \mathbb{Z} / p$, so $\bar{T}\left(H^{*} B \mathbb{Z} / p\right) \cong \prod_{\phi \neq 0} H^{*} B \mathbb{Z} / p$. We get

$$
\bar{T}\left(H^{*} B \mathbb{Z} / p \otimes H^{*} X^{\mathbb{Z} / p}\right) \cong \prod_{\phi \neq 0} H^{*} B \mathbb{Z} / p \otimes H^{*} X^{\mathbb{Z} / p} .
$$

At this point, we're basically done. We have to check that the adjoint maps are what we expect them to be, but that's not too hard. This is a testament to the usefulness of the exactness and monoidality of T.

By Lannes' theorem, if (Z, ω) is our model above,

$$
\left(\mathbb{F}_{p}\right)_{\infty} Z \simeq \operatorname{map}\left(B \mathbb{Z} / p,\left(\mathbb{F}_{p}\right)_{\infty} X_{\mathrm{hZ} / p}\right) .
$$

The left-hand side is

$$
\left(\mathbb{F}_{p}\right)_{\infty} X_{\mathrm{hZ} / p} \sqcup \coprod_{\phi \neq 0} B \mathbb{Z} / p \times\left(\mathbb{F}_{p}\right)_{\infty} X^{\mathbb{Z} / p}
$$

($B \mathbb{Z} / p$ is already p-complete). The right-hand side is

$$
\operatorname{map}\left(B \mathbb{Z} / p,\left(\left(\mathbb{F}_{p}\right)_{\infty} X\right)_{\mathrm{h} \mathbb{Z} / p}\right)
$$

by the 'nilpotent fiber lemma,' which will be proved momentarily. Now take the fiber at $1 \in \operatorname{map}(B \mathbb{Z} / p, B \mathbb{Z} / p)$ on both sides. We get

$$
\left(\mathbb{F}_{p}\right)_{\infty}\left(X^{\mathbb{Z} / p}\right) \simeq \operatorname{map}_{\mathbb{Z} / p}\left(E \mathbb{Z} / p,\left(\mathbb{F}_{p}\right)_{\infty} X\right),
$$

which is the Sullivan conjecture.
We still need to prove the nilpotent fiber lemma, which goes as follows.
Lemma 2. Let $F \rightarrow X \rightarrow Y$ be a fibration sequence of connected spaces, and suppose $\pi_{1} Y$ acts nilpotently on $\pi_{*} F$. Then

$$
\left(\mathbb{F}_{p}\right)_{\infty} F \rightarrow\left(\mathbb{F}_{p}\right)_{\infty} X \rightarrow\left(\mathbb{F}_{p}\right)_{\infty} Y
$$

is still a fiber sequence.
Applying this to $X \rightarrow E \mathbb{Z} / p \times_{\mathbb{Z} / p} X \rightarrow B \mathbb{Z} / p$, we get $\left(\mathbb{F}_{p}\right)_{\infty} X_{\mathrm{h} \mathbb{Z} / p} \simeq\left(\left(\mathbb{F}_{p}\right)_{\infty} X\right)_{\mathrm{h} \mathbb{Z} / p}$.

