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Recall that we have C2 acting on Si+j+1 by the antipodal map on the first (i+ 1) coordinates. We wrote
the homotopy orbits as a pushout square

RP j × Si //

pj

��

RP∞ × Si

��
RP j // EC2 ×C2

Si+j+1.

In mod 2 cohomology, there’s a short exact sequence

0 // H∗(EC2 ×C2 S
i+j+1) // H∗RP j ×H∗(RP∞ × Si) //

∼=
��

H∗RP j × Si //

∼=
��

0

F2[x]/(xj+1)× F2[x]⊗ Λ[y] // F2[x]/(xj+1)⊗ Λ(y) // 0

We need to compute the kernel of the bottom map. We have (x, x)n = (xn, xn) 7→ 0, and (0, xny) 7→ xny,
which is 0 for n ≥ j + 1. Let µ = (x, x), and z = (0, xj+1y). We get

H∗(EC2 ×C2 S
i+j+1) ∼= F2[µ]⊗ Λ(z).

The Steenrod operations act by Sqi µj =
(
j
i

)
µi+j , and Sqi(z) = Sqi(xj+1y) =

(
j+1
i

)
xi+j+1y. So, although

this cohomology is the same as that of H∗(RP∞ × Si+j+1) as a ring, it’s generally not the same as an
unstable algebra.

The Sullivan conjecture, in its most basic form, is

(Fp)∞(XZ/p) ' ((Fp)∞X)hZ/p.

To prove this, we’re going to calculate map(BZ/p,EZ/p×Z/p (Fp)∞X), and see what we get.
There’s a fiber sequence

X → EZ/p×Z/p X = XhZ/p → BZ/p

so we get a map

map(BZ/p,XhZ/p)→ map(BZ/p,BZ/p) '
∐

φ:Z/p→Z/p

BZ/p.

To get the expression on the right, note that φ is the same as a representation of Z/p in itself, and its
centralizer is all of Z/p. Pulling this decomposition back, we can break map(BZ/p,XhZ/p) up as a coproduct
over φ of components which we’ll call mapφ(BZ/p,XhZ/p). These components are not created equal. If φ = 0,
we have a fiber sequence

map(BZ/p,X)→ map0(BZ/p,XhZ/p)→ BZ/p = map0(BZ/p,BZ/p),

where map(BZ/p,X) is the fiber over map(BZ/p, ∗) = ∗. If X is finite, then map(BZ/p,X) ' X, and we
might guess that map0(BZ/p,XhZ/p) ' XhZ/p.
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If φ 6= 0, the basepoint no longer lives in the φ component of map(BZ/p,BZ/p). Instead, we pick a
basepoint {φ}, and let Fφ ⊆ mapφ(BZ/p,XhZ/p) be the fiber. This is the space of maps

BZ/p //

φ

&&

EZ/p×Z/p X

��BZ/p.

For simplicity, let’s say π1X = 0. By covering space theory,

Fφ = mapZ/p(EZ/p,EZ/p×X) ' XhZ/p.

This is very different than the case φ = 0. It is independent of φ, but the equivalence isn’t – it’s a matter of
choosing a basepoint of BZ/p, which changes the mapping space by conjugation.

We’ve gotten the homotopy fixed points XhZ/p as fibers living inside map(BZ/p,XhZ/p). Now we’ll use
Lannes’ theorem to calculate map(BZ/p, ((Fp)∞X)hZ/p). This requires us to produce a model

ω : BZ/p× Z → XhZ/p

so that the adjoint map
ω̃∗ : H∗Z ← TH∗XhZ/p

is an isomorphism.
Assume that X is finite. We’ll let

Z = XhZ/p t
∐
φ 6=0

BZ/p×XZ/p.

The map ω is defined on each component as follows. On the zero component, we just take the projection

BZ/p×XhZ/p → XhZ/p.

The adjoint map XhZ/p → map(BZ/p,XhZ/p) sends x to the constant map to x. On a component corre-
sponding to φ 6= 0, ω is

BZ/p× (BZ/p×XZ/p)→ BZ/p×XZ/p ⊆ EZ/p×Z/p X,

defined by (a, b, x) 7→ (φ(a) + b, x).
We need to show that ω̃∗ is an isomorphism. This requires us to calculate TH∗XhZ/p. Recall that

H∗BZ/p ∼= H̃∗BZ/p⊕ Fp, so

HomU (TK,L) ∼= HomU (K, H̃∗BZ/p⊗ L)×HomU (K,L) ∼= HomU (TK ×K,L),

where we’ve defined T to be left adjoint to H̃∗BZ/p ⊗ ·. If K is finite, we know already that TK = K, so
TK = 0.

Let U ⊇ XZ/p be a Z/p-NDR. (We’d have to check that these exist.) There’s a homotopy pushout

(U −XZ/p)/(Z/p) //

��

BZ/p×XZ/p

��
(X −XZ/p)/(Z/p) // XhZ/p.

The spaces on the left-hand side are finite, so T kills them; T is also exact, so we get

Proposition 1.
TH∗XhZ/p ∼= TH∗(BZ/p×XZ/p).

In other words,
TH∗XhZ/p = H∗XhZ/p ⊕ TH∗(BZ/p×XhZ/p).
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Hopefully this is starting to look familiar.
We calculate that T (H∗BZ/p⊗H∗XZ/p) = T (H∗BZ/p)⊗H∗XZ/p, since T (A⊗B) = T (A)⊗T (B) and

XZ/p is finite. And, of course, T (H∗BZ/p) ∼= H∗BZ/p×
∏
φ 6=0H

∗BZ/p, so T (H∗BZ/p) ∼=
∏
φ 6=0H

∗BZ/p.
We get

T (H∗BZ/p⊗H∗XZ/p) ∼=
∏
φ 6=0

H∗BZ/p⊗H∗XZ/p.

At this point, we’re basically done. We have to check that the adjoint maps are what we expect them to be,
but that’s not too hard. This is a testament to the usefulness of the exactness and monoidality of T .

By Lannes’ theorem, if (Z, ω) is our model above,

(Fp)∞Z ' map(BZ/p, (Fp)∞XhZ/p).

The left-hand side is
(Fp)∞XhZ/p t

∐
φ6=0

BZ/p× (Fp)∞XZ/p

(BZ/p is already p-complete). The right-hand side is

map(BZ/p, ((Fp)∞X)hZ/p)

by the ‘nilpotent fiber lemma,’ which will be proved momentarily. Now take the fiber at 1 ∈ map(BZ/p,BZ/p)
on both sides. We get

(Fp)∞(XZ/p) ' mapZ/p(EZ/p, (Fp)∞X),

which is the Sullivan conjecture.
We still need to prove the nilpotent fiber lemma, which goes as follows.

Lemma 2. Let F → X → Y be a fibration sequence of connected spaces, and suppose π1Y acts nilpotently
on π∗F . Then

(Fp)∞F → (Fp)∞X → (Fp)∞Y

is still a fiber sequence.

Applying this to X → EZ/p×Z/p X → BZ/p, we get (Fp)∞XhZ/p ' ((Fp)∞X)hZ/p.
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