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Recall that we have Cy acting on S**7+1 by the antipodal map on the first (i + 1) coordinates. We wrote
the homotopy orbits as a pushout square

RPI x §* — > RP>® x §*

1

RP ECy x¢, S+,

In mod 2 cohomology, there’s a short exact sequence

0 —= H*(ECy x¢, ST —— H*RPJ x H*(RP® x §) ——> H*RPJ x §' ——> 0

l~ :

Fola]/(a741) x Fa[z] ® Aly] —— Fa[2]/(27™1) @ Ay) —=0

We need to compute the kernel of the bottom map. We have (z,z)" = (z™,2™) — 0, and (0, z"y) — ™y,
which is 0 for n > j + 1. Let g = (z,z), and z = (0,277 1y). We get

H*(ECQ Xy Si+j+1) = F2[M] ®A(z).

The Steenrod operations act by Sq’ pf = (Z),u”j, and Sqi(z) = Sq'(zitly) = (j'l.'l)m”j*ly. So, although
this cohomology is the same as that of H*(RP> x Siti+l) as a ring, it’s generally not the same as an
unstable algebra.

The Sullivan conjecture, in its most basic form, is

(FP)OO(XZ/p> = ((FP)OOX)hZ/p-

To prove this, we're going to calculate map(BZ/p, EZ/p Xz, (Fp)sX), and see what we get.
There’s a fiber sequence
X — EZ/p XZ/p X = XhZ/p — BZ/p

so we get a map
map(BZ/p, Xuz/p) — map(BZ/p, BZ/p)~ []  BZ/p.
$:2/p—1L/p

To get the expression on the right, note that ¢ is the same as a representation of Z/p in itself, and its
centralizer is all of Z/p. Pulling this decomposition back, we can break map(BZ/p, Xyz/,) up as a coproduct
over ¢ of components which we’ll call map¢(BZ/p, Xnz/p). These components are not created equal. If ¢ = 0,
we have a fiber sequence

map(BZ/pa X) - mapO(BZ/pa XhZ/p) - BZ/p = mapO(BZ/pv BZ/p)a

where map(BZ/p, X) is the fiber over map(BZ/p, *) = x. If X is finite, then map(BZ/p, X) ~ X, and we
might guess that map,(BZ/p, Xuz/p) ~ Xuz/p-



If ¢ # 0, the basepoint no longer lives in the ¢ component of map(BZ/p, BZ/p). Instead, we pick a
basepoint {¢}, and let Fy C map,(BZ/p, Xnz/,) be the fiber. This is the space of maps

BZ/p — EZ[p xzp X

N

For simplicity, let’s say m X = 0. By covering space theory,
Fy =mapy,,(EZ/p, EL/p x X) ~ X"%/7,

This is very different than the case ¢ = 0. It is independent of ¢, but the equivalence isn’t — it’s a matter of
choosing a basepoint of BZ/p, which changes the mapping space by conjugation.

We've gotten the homotopy fixed points X"%/? as fibers living inside map(BZ/p, Xyz/p). Now we'll use
Lannes’ theorem to calculate map(BZ/p, ((Fp)oo X )nz/p). This requires us to produce a model

w:BZ/px Z = Xuzyp

so that the adjoint map
Wy : H*Z TH*Xhz/p

is an isomorphism.
Assume that X is finite. We'll let

Z = Xyzyp U [ [ BZ/p x X7,
¢#0

The map w is defined on each component as follows. On the zero component, we just take the projection
BZ/p X XhZ/p — XhZ/p'

The adjoint map Xyz/, — map(BZ/p, XhZ/p) sends x to the constant map to . On a component corre-
sponding to ¢ # 0, w is

BZ/p x (BZ/p x X%“/?) — BZ/p x X*'? C EZ/p xz, X,

defined by (a,b,z) — (¢(a) + b, x).
We need to show that w* is an isomorphism. This requires us to calculate TH*Xy,7,,. Recall that
H*BZ/p= H*BZ/p & F,, so

Homy, (TK, L) = Homy (K, H* BZ/p ® L) x Homy (K, L) = Homy(TK x K, L),

where we’ve defined T to be left adjoint to ﬁ*BZ/p ® -. If K is finite, we know already that TK = K, so
TK =0.
Let U O X%/? be a Z/p-NDR. (We’d have to check that these exist.) There’s a homotopy pushout

(U—XZ/p)/(Z/p) HBZ/Z) % XZ/p

| |

(X — XP/P)(Z)p) —— Xnz/p-

The spaces on the left-hand side are finite, so T kills them; T is also exact, so we get

Proposition 1. - -
TH*Xynz), = TH*(BZ/p x X"/?).

In other words, B
TH* Xyz)p = H* X7, ® TH*(BZ/p x X"%/7).



Hopefully this is starting to look familiar.

We calculate that T(H*BZ/p® H*X*/?) = T(H*BZ/p) ® H*X%/?  since T(A® B) = T(A)® T(B) and
XZ/P i finite. And, of course, T(H*BZ/p) = H*BZ/p x H@éo H*BZ/p, so T(H*BZ/p) = H(#O H*BZ/p.
We get

T(H*BZ/p® H*X"/*) = [[ H*BZ/p @ H*X"/".
670
At this point, we’re basically done. We have to check that the adjoint maps are what we expect them to be,
but that’s not too hard. This is a testament to the usefulness of the exactness and monoidality of T'.
By Lannes’ theorem, if (Z,w) is our model above,

(Fp)ooZ ~ map(BZ/p, (Fp)ooXhZ/p).

The left-hand side is
(Fp)ooXnzp U [ [ BZ/p x (Fp)oc X7
¢#0

(BZ/p is already p-complete). The right-hand side is

map(BZ/p, (Fp) oo X )nz/p)

by the ‘nilpotent fiber lemma,’ which will be proved momentarily. Now take the fiber at 1 € map(BZ/p, BZ/p)
on both sides. We get
(Fp)oo (XP/P) > mapg ,(EZ/p, (Fp) o X),

which is the Sullivan conjecture.
We still need to prove the nilpotent fiber lemma, which goes as follows.

Lemma 2. Let F — X — Y be a fibration sequence of connected spaces, and suppose m1Y acts nilpotently
on m.F. Then
(Fp)ooF = (Fp)ooX = (Fp)oY

is still a fiber sequence.

Applying this to X — EZ/p xz, X — BZ/p, we get (Fp)ooXnz/p = (Fp)oo X )nz/p-



