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For the record, the Sullivan conjecture is true for an arbitrary finite p-group π:

(Fp)∞(Xπ) ' ((Fp)∞X)hπ.

The very first fact you learn about p-groups is that they have a nontrivial center. Let x ∈ Z(π) be a central
element, and let σ be the subgroup it generates. This is a normal subgroup! So we have a smaller p-group
π′ = π/σ; also, Xπ = (Xσ)π

′
, and likewise for homotopy orbits. So we get

(Fp)∞(Xπ) = (Fp)∞((Xσ)π
′
),

and by induction on the order of π, this is

((Fp)∞(Xσ))hπ
′

= (((Fp)∞X)hσ)hπ
′

= ((Fp)∞X)hπ.

So there’s really nothing in this more complicated case that requires anything.
In particular, if π acts trivially, (Fp)∞X ' map(Bπ, (Fp)∞X).
Let’s change tacks and talk some more about Bousfield-Kan p-completion.

Definition 1. Let G be a group. G is nilpotent if one of the following equivalent conditions holds:

1. The lower central series terminates;

2. G has a finite filtration
{e} / Gn / · · · / G1 / G

(each Gi normal in Gi−1) with Gi−1/Gi abelian.

Any solvable group is nilpotent, but, for example, the free group on 2 generators, π1(S1 ∨S1), is not: its
lower central series has associated graded the free Lie algebra on 2 generators, which is pretty big.

Definition 2. Let G be a group and M a G-module (an abelian group with an action of G). Then M is
nilpotent if it has a finite filtration by G-modules

0 ⊆Mn ⊆ · · · ⊆M1 ⊆M

where G acts trivially on Mi/Mi+1.

We can even generalize this to where M is nonabelian; then a nilpotent group is a group that’s nilpotent
for its own conjugation action.

Definition 3. A connected space is nilpotent if π1X is nilpotent and acts nilpotently on πnX, n > 1.

For example, any simply connected space is nilpotent. On the other hand, even if π1X is abelian, X
might not be nilpotent.

Example 4. S1∨S2 is not a nilpotent space. Its universal cover is R with a copy of S2 glued to each integer.
Thus π2(S1 ∨ S2) = Z[π1], where π1 ∼= Z, say generated by τ . If f : Z[π1] �M is a surjection onto a trivial
π1-module, then ker f contains 1 − τ i for all i, so ker(f) contains the augmentation ideal I of Z[π1]. But
this means that M is a quotient of the integers, which are Z[π1]/I. In fact, I is isomorphic to Z[π1], via
x 7→ x(1− τ) ∈ I. So we won’t have the finite filtration we need.
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Theorem 5. Let X be a nilpotent space. Then X → (Fp)∞X is the H∗(·;Fp)-localization of X, i. e. the
terminal homology isomorphism out of X.

In other words, if X → Y is a mod p homology isomorphism, then there’s a unique map Y → (Fp)∞X
such that the composition is X → (Fp)∞X. The existence of such a localization (for any homology theory,
not just ordinary homology) was proved by Bousfield in an important paper in Topology, 1975.

Example 6 (Bousfield). (S1∨Sn)→ (Fp)∞(S1∨Sn), where n ≥ 2, is not an isomorphism on mod p homology.
In fact, none of the maps

(Fp)k∞(S1 ∨ Sn)→ (Fp)k+1
∞ (S1 ∨ Sn)

are homology isomorphisms. Dwyer showed that you get a homology isomorphism if you do this transfinitely
many times.

Proposition 7. Let X be simply connected.

1. If πnX is finitely generated, then πn(Fp)∞X = (πnX)∧p .

2. More generally, there is a split short exact sequence

0→ L0πnX → πn(Fp)∞X → L1πn−1X → 0

where LiA is the ith left derived functor of completion.

You may have heard that completion is left exact. This only happens under finite type hypotheses – in
general, the functor L0 is not actually completion. Let’s digress to talk about this.

For an abelian group A, we have A∧p = lim(Z/pn⊗A). In general, Z/pn⊗· has left derived functors, and
lim has right derived functors. So we have L1A = lim Tor1(Z/pn, A), and L0A fits into an exact sequence

0→ lim(Z/pn ⊗A)→ L0A→
1

lim Tor1(Z/pn, A)→ 0.

The higher derived functors are zero.
For example, let Z/p∞ = colimZ/pn ⊆ Q/Z. One can show that L0Z/p∞ = 0, and that L1Z/p∞ = Zp.

As a result, (Fp)∞K(Z/p∞, n) = K(Zp, n+ 1). (These are good things to do in your chair when the lecture
gets boring.)

Lemma 8 (Nilpotent fiber lemma). Let p : E → B be a fibration with E, B connected and π1E → π1B
onto. If π1B acts nilpotently on H∗(F,Fp), then the natural map

(Fp)∞F → fiber{(Fp)∞E → (Fp)∞B}

is a weak equivalence. That is, (Fp)∞ preserves this fibration.

We can use this to study the p-completion functor on nilpotent spaces, by working up the Postnikov
tower.

Lemma 9. Let A be an abelian group. Then

K(A,n)→ (Fp)∞K(A,n)

is a homology isomorphism, and

πn(Fp)∞K(A,n) = L0A,

πn+1(Fp)∞K(A,n) = L1A.

Proof. You can prove this by direct calculation using the Bousfield-Kan spectral sequence. Bousfield has a
slicker way of doing it by defining a universal property for the right-hand side.
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If X is nilpotent, then we can write X = holimXn, where {Xn} is the ‘refined’ Postnikov tower, a tower
of fibrations

· · · // //X2
// //X1

// //∗ = X0

where each Xn → Xn−1 has fiber K(A, sn) and π1Xn−1 acts trivially on H∗K(A, sn). (Note that s 6= n in
general: we need to filter each of the homotopy groups of X into pieces with a trivial π1-action.) Moreover,
sn is increasing, and hits each integer k only finitely many times.

By induction and the nilpotent fiber lemma, we get that

Xn → (Fp)∞Xn

is a mod p homology isomorphism. After showing that p-completion commutes with this filtered limit, we
get that X → (Fp)∞X Is a mod p homology isomorphism. Note that if X → Y is a homology isomorphism,
then the Bousfield-Kan resolution is a levelwise weak equivalence

(Fp)•X → (Fp)•Y

and so (Fp)∞X
∼→ (Fp)∞Y . Thus, we get the diagonal map in the diagram

X

��

// (Fp)∞X

∼
��

Y //

;;

(Fp)∞Y.

This proves that (Fp)∞ is localization.
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