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For the record, the Sullivan conjecture is true for an arbitrary finite p-group
(Fp)oo(XT) =~ ((Fp)ooX)hw-

The very first fact you learn about p-groups is that they have a nontrivial center. Let € Z(m) be a central
element, and let o be the subgroup it generates. This is a normal subgroup! So we have a smaller p-group
m' =m/o; also, X™ = (X?)™ , and likewise for homotopy orbits. So we get

(Fp)oo(X7) = (Fp)oo (X)),

and by induction on the order of 7, this is
(Fp)oo (XN = ((Fp)oo X)*7)™ = ((Fp)oo X)".

So there’s really nothing in this more complicated case that requires anything.
In particular, if m acts trivially, (Fp)sX ~ map(B7, (Fp)e0X).
Let’s change tacks and talk some more about Bousfield-Kan p-completion.

Definition 1. Let G be a group. G is nilpotent if one of the following equivalent conditions holds:
1. The lower central series terminates;

2. (G has a finite filtration
{e}<Gp<a---<a4G1 <G
(each G; normal in G;_1) with G;_;/G; abelian.

Any solvable group is nilpotent, but, for example, the free group on 2 generators, m;(S! Vv S1), is not: its
lower central series has associated graded the free Lie algebra on 2 generators, which is pretty big.

Definition 2. Let G be a group and M a G-module (an abelian group with an action of G). Then M is
nilpotent if it has a finite filtration by G-modules

0CM,C---CMCM
where G acts trivially on M;/M; 1.

We can even generalize this to where M is nonabelian; then a nilpotent group is a group that’s nilpotent
for its own conjugation action.

Definition 3. A connected space is nilpotent if 7 X is nilpotent and acts nilpotently on 7, X, n > 1.

For example, any simply connected space is nilpotent. On the other hand, even if m X is abelian, X
might not be nilpotent.

Example 4. S' Vv S? is not a nilpotent space. Its universal cover is R with a copy of S glued to each integer.
Thus 7 (St v 5?) = Z[m], where w1 & Z, say generated by 7. If f : Z[m1] — M is a surjection onto a trivial
m1-module, then ker f contains 1 — 7¢ for all i, so ker(f) contains the augmentation ideal I of Z[r;]. But
this means that M is a quotient of the integers, which are Z[m]/I. In fact, I is isomorphic to Z[m], via
x+— 2(1 —7) € I. So we won’t have the finite filtration we need.



Theorem 5. Let X be a nilpotent space. Then X — (Fp)oX is the H.(-;F,)-localization of X, i. e. the
terminal homology isomorphism out of X .

In other words, if X — Y is a mod p homology isomorphism, then there’s a unique map ¥ — (Fp)oo X
such that the composition is X — (F,).X. The existence of such a localization (for any homology theory,
not just ordinary homology) was proved by Bousfield in an important paper in Topology, 1975.

Ezample 6 (Bousfield). (S'VS™) — (Fp)oo(S'V.S™), where n > 2, is not an isomorphism on mod p homology.
In fact, none of the maps
(Fp) (ST V 8™) = (Fp)5d (81 v §™)

are homology isomorphisms. Dwyer showed that you get a homology isomorphism if you do this transfinitely
many times.

Proposition 7. Let X be simply connected.
1. If mp X is finitely generated, then mp(Fp)ooX = (wnX);,\,
2. More generally, there is a split short exact sequence
0— Lomp X = mp(Fp)ooX — L1m—1 X — 0
where L; A is the ith left derived functor of completion.

You may have heard that completion is left exact. This only happens under finite type hypotheses — in
general, the functor Lg is not actually completion. Let’s digress to talk about this.

For an abelian group A, we have AI/)\ =lim(Z/p" ® A). In general, Z/p" ® - has left derived functors, and
lim has right derived functors. So we have L; A = lim Tory(Z/p™, A), and Lo A fits into an exact sequence

1
0 — lim(Z/p" ® A) — LoA — lim Tory (Z/p"™, A) — 0.

The higher derived functors are zero.

For example, let Z/p> = colimZ/p™ C Q/Z. One can show that LyZ/p> = 0, and that L1Z/p>™ = Z,,.
As aresult, (Fp)o K (Z/p™,n) = K(Zp,n+ 1). (These are good things to do in your chair when the lecture
gets boring.)

Lemma 8 (Nilpotent fiber lemma). Let p : E — B be a fibration with E, B connected and mE — m B
onto. If m B acts nilpotently on H.(F,F,), then the natural map

(Fp)ooF — fiber{(Fp)ooE = (Fp)oc B}
is a weak equivalence. That is, (Fp)eo preserves this fibration.

We can use this to study the p-completion functor on nilpotent spaces, by working up the Postnikov
tower.

Lemma 9. Let A be an abelian group. Then
K(A,n) — (Fp)eK(A,n)
is a homology isomorphism, and

Tn (Fp)oc K (A, n) = Lo A,
7Tn+1(Fp)OOK(A, n) = LlA

Proof. You can prove this by direct calculation using the Bousfield-Kan spectral sequence. Bousfield has a
slicker way of doing it by defining a universal property for the right-hand side. O



If X is nilpotent, then we can write X = holim X,,, where {X,} is the ‘refined’ Postnikov tower, a tower
of fibrations

X2 X1 * ZXO

where each X,, — X,,_1 has fiber K (A4, s,) and m X,,_1 acts trivially on H,K(A,s,). (Note that s # n in
general: we need to filter each of the homotopy groups of X into pieces with a trivial m1-action.) Moreover,
Sp 18 increasing, and hits each integer k£ only finitely many times.

By induction and the nilpotent fiber lemma, we get that

Xn = (Fp)ooXn

is a mod p homology isomorphism. After showing that p-completion commutes with this filtered limit, we
get that X — (F,)00X Is a mod p homology isomorphism. Note that if X — Y is a homology isomorphism,
then the Bousfield-Kan resolution is a levelwise weak equivalence

(Fp)* X — (Fp)°Y
and 50 (Fp)ooX = (Fp)eeY . Thus, we get the diagonal map in the diagram

X —— (Fp)oX

L T

Y — (F))Y.

This proves that (Fp)e is localization.



