Lecture 22: p-compact groups

Paul VanKoughnett

November 19, 2014

Question: Let $p>2$ and $A=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right] \in \mathcal{K}$. Is there a space X such that $H^{*} X \cong A$? If there is one, how many are there?

Note that if X is such a space and X is simply connected, $H^{*} \Omega X=\Lambda\left(y_{1}, \ldots, y_{n}\right)$. So we have a related question:

Question': Classify all loop spaces ΩX with $H^{*} \Omega X$ finite.
This is the beginning of the p-compact group story. A (Dwyer-Wilkerson) p-compact group is a p-complete space X so that ΩX is connected and $H^{*} \Omega X$ is finite. (The 'group' is the space, not its loop space: the classifying space of a Lie group, rather than the Lie group itself. Confusing.) The problem of classifying p-compact groups has been solved, fairly recently in fact - it's not well-known in the US, but it's a popular subject in Europe.
Example 1. $(B G)_{p}=\left(\mathbb{F}_{p}\right)_{\infty} B G$ where G is a 1-connected Lie group.
Example 2. $B U(n)$, with $H^{*} B U(n) \cong \mathbb{F}_{p}\left[c_{1}, \ldots, c_{n}\right]$. In fact, this has more structure than just this cohomology ring: there's a map

$$
\left(\mathbb{C} P^{\infty}\right)^{\times n} \cong B U(1)^{\times n} \rightarrow B U(n)
$$

with the property $H^{*} B U(n) \xrightarrow{\simeq} H^{*}\left(B U(1)^{\times} n\right)^{\Sigma_{n}}$. In fact, this comes out of the Lie group structure of $U(n)$: $U(1)^{\times n}$ is a maximal torus $T \subseteq U(n)$, and Σ_{n} is the Weyl group $N(T) / T$.

Question: Given a p-compact group X, can you produce a maximal torus

$$
\left(B U(1)_{n}^{\times}\right)_{p} \rightarrow X_{p} ?
$$

A Weyl group? An element of order p, i. e. a map $B \mathbb{Z} / p \rightarrow X$? To do these things in Lie group theory, you need to actually use analysis. Here, surprisingly, we can use the T-functor.

Here's a toy case: $\left(\mathbb{C} P^{\infty}\right)_{p}=(B U(1))_{p}=K\left(\mathbb{Z}_{p}, 2\right) . \mathbb{Z}_{p}^{\times}$contains a copy of $\mathbb{F}_{p}^{\times}=C_{p-1}$, which acts on $K\left(\mathbb{Z}_{p}, 2\right)$ (since $K(G, n)$ is functorial in $\left.G\right)$. Let Y be the homotopy orbits $E C_{p-1} \times{ }_{C_{p-1}} K\left(\mathbb{Z}_{p}, 2\right)$. We have

$$
H^{*}\left(Y, \mathbb{F}_{p}\right)=\left(H^{*} \mathbb{C} P^{\infty}\right)^{C_{p-1}}=\left(\mathbb{F}_{p}[x]\right)^{C_{p-1}}=\mathbb{F}_{p}[y]
$$

where $|y|=2(p-1), y=x^{p-1}$. (The action is just via $C_{p-1} \cong \mathbb{F}_{p}^{\times}$multiplying on x.) This is an exclusively p-complete thing: C_{p-1} doesn't act on the integers. Y isn't simply connected, so we have to p-complete again. $Z=Y_{p}$ is simply connected and has $\Omega Z \simeq S_{p}^{2 p-3}$, meaning that this p-complete sphere has an H-space structure.

Let's reverse engineer this. Let X be a p-complete space with $H^{*} X \cong \mathbb{F}_{p}[y],|y|=2(p-1)$. The Steenrod algebra structure is forced by $\mathcal{P}^{p-1}(y)=y^{p}$. In fact, there's an Adem relation

$$
\underbrace{\mathcal{P}^{1} \cdots \mathcal{P}^{1}}_{i}=\binom{p-i}{i} \mathcal{P}^{i}
$$

for $0 \leq i \leq p-1$, so $\mathcal{P}^{i}(y)=\binom{p-i}{i} y^{1+i}$, and $\mathcal{P}^{i}(y)=0$ for $i>p-1$. We get a map in $\mathcal{K}, H^{*} X \rightarrow$ $\mathbb{F}_{p}[x]=H^{*} \mathbb{C} P^{\infty}$, with $y \mapsto x^{p-1}$. Algebraically, we've adjoined a $(p-1)$ st root of $y-$ that is, $\mathbb{F}_{p}[x]=$ $\left(H^{*} X\right)[z] /\left(z^{p-1}-y\right)$. The roots of $z^{p-1}-y$ are $a x, a \in \mathbb{F}_{p}^{\times}$.

Now let's calculate $T H^{*} X=T \mathbb{F}_{p}[y]=\left(T \mathbb{F}_{p}[x]\right)^{C_{p-1}}$. But $T H^{*} \mathbb{C} P^{\infty}=H^{*} \operatorname{map}\left(B \mathbb{Z} / p, \mathbb{C} P^{\infty}\right)=$ $H^{*}\left(\mathbb{Z} / p \times \mathbb{C} P^{\infty}\right)$ - we can calculate this fairly easily using that $\mathbb{C} P^{\infty}$ is an Eilenberg-Mac Lane space.

$$
T H^{*} \mathbb{C} P^{\infty}=\left(\mathbb{F}_{p}[x]\right)^{\times \mathbb{Z} / p}
$$

The group C_{p-1} acts on the $\mathbb{F}_{p}[x]$ factor as well as, by multiplication, on the exponent. So

$$
T \mathbb{F}_{p}[y] \cong \mathbb{F}_{p}[x]^{C_{p-1}} \times\left(\mathbb{F}_{p}[x]^{\times \mathbb{F}_{p}^{\times}}\right)^{C_{p-1}} \cong \mathbb{F}_{p}[y] \times \mathbb{F}_{p}[x]
$$

This is the cohomology of $X \sqcup \mathbb{C} P^{\infty}$. By Lannes' theorem,

$$
X \sqcup\left(\mathbb{C} P^{\infty}\right)_{p} \operatorname{map}(B \mathbb{Z} / p, X)
$$

This has two components, one of which, $T^{\phi} H^{*} X \cong H^{*} \mathbb{C} P^{\infty}$, corresponds to a map $\phi: H^{*} X \rightarrow H^{*} \mathbb{C} P^{\infty} \subseteq$ $H^{*} B \mathbb{Z} / p$, and the composite

$$
\left(\mathbb{C} P^{\infty}\right)_{p} \rightarrow \operatorname{map}(B \mathbb{Z} / p, X) \rightarrow X
$$

where the right-hand map is evaluation at the basepoint, realizes ϕ. This is the p-compact maximal torus.
If this map can be made C_{p-1}-equivariant, we get an equivalence

$$
\left(E C_{p-1} \times_{C_{p-1}}\left(\mathbb{C} P^{\infty}\right)_{p}\right)_{p} \xrightarrow{\sim} X .
$$

The last step, then, is to study automorphisms of $B=\left(\mathbb{C} P^{\infty}\right)_{p}$ over X. That is, we should study the spaces of maps

We want to find a lift in the diagram

So far, we've done a similar analysis for the simpler diagram

where $i: B \mathbb{Z} / p \rightarrow\left(\mathbb{C} P^{\infty}\right)_{p}$.
This is the program from now on. We'll take $A=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right]$, with $\left|x_{i}\right|=2 d_{i}$ and $p \nmid d_{1} \cdots d_{n}$.
Theorem 3 (Adams-Wilkerson). There is a map $A \rightarrow H^{*}\left(\left(B S^{1}\right)^{\times n}\right)=\mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]$, and a finite group $W \subseteq G L_{n}\left(\mathbb{Z}_{p}\right)$ of order $d_{1} \cdots d_{n}$, with $A=\mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]^{W}$.

Theorem 4 (Clark-Ewing). We won't prove this theorem, but it classifies such W, called p-adic reflection groups, and proves that A is actually the cohomology of a space, namely $E W \times_{W}\left(\left(B S^{1}\right)^{\times n}\right)_{p}$.

Theorem 5 (Dwyer-Miller-Wilkerson). They proved uniqueness: if $H^{*} X \cong A$, then it has a maximal torus and a W-action.

