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Question: Let p > 2 and A = Fp[x1, . . . , xn] ∈ K. Is there a space X such that H∗X ∼= A? If there is
one, how many are there?

Note that if X is such a space and X is simply connected, H∗ΩX = Λ(y1, . . . , yn). So we have a related
question:

Question′: Classify all loop spaces ΩX with H∗ΩX finite.
This is the beginning of the p-compact group story. A (Dwyer-Wilkerson) p-compact group is a

p-complete space X so that ΩX is connected and H∗ΩX is finite. (The ‘group’ is the space, not its loop
space: the classifying space of a Lie group, rather than the Lie group itself. Confusing.) The problem of
classifying p-compact groups has been solved, fairly recently in fact – it’s not well-known in the US, but it’s
a popular subject in Europe.

Example 1. (BG)p = (Fp)∞BG where G is a 1-connected Lie group.

Example 2. BU(n), with H∗BU(n) ∼= Fp[c1, . . . , cn]. In fact, this has more structure than just this coho-
mology ring: there’s a map

(CP∞)×n ∼= BU(1)×n → BU(n)

with the property H∗BU(n)
'→ H∗(BU(1)×n)Σn . In fact, this comes out of the Lie group structure of U(n):

U(1)×n is a maximal torus T ⊆ U(n), and Σn is the Weyl group N(T )/T .

Question: Given a p-compact group X, can you produce a maximal torus

(BU(1)×n )p → Xp?

A Weyl group? An element of order p, i. e. a map BZ/p→ X? To do these things in Lie group theory, you
need to actually use analysis. Here, surprisingly, we can use the T -functor.

Here’s a toy case: (CP∞)p = (BU(1))p = K(Zp, 2). Z×p contains a copy of F×p = Cp−1, which acts on
K(Zp, 2) (since K(G,n) is functorial in G). Let Y be the homotopy orbits ECp−1 ×Cp−1

K(Zp, 2). We have

H∗(Y,Fp) = (H∗CP∞)Cp−1 = (Fp[x])Cp−1 = Fp[y]

where |y| = 2(p− 1), y = xp−1. (The action is just via Cp−1
∼= F×p multiplying on x.) This is an exclusively

p-complete thing: Cp−1 doesn’t act on the integers. Y isn’t simply connected, so we have to p-complete
again. Z = Yp is simply connected and has ΩZ ' S2p−3

p , meaning that this p-complete sphere has an
H-space structure.

Let’s reverse engineer this. Let X be a p-complete space with H∗X ∼= Fp[y], |y| = 2(p−1). The Steenrod
algebra structure is forced by Pp−1(y) = yp. In fact, there’s an Adem relation

P1 · · · P1︸ ︷︷ ︸
i

=

(
p− i
i

)
Pi

for 0 ≤ i ≤ p − 1, so Pi(y) =
(
p−i
i

)
y1+i, and Pi(y) = 0 for i > p − 1. We get a map in K, H∗X →

Fp[x] = H∗CP∞, with y 7→ xp−1. Algebraically, we’ve adjoined a (p − 1)st root of y – that is, Fp[x] =
(H∗X)[z]/(zp−1 − y). The roots of zp−1 − y are ax, a ∈ F×p .

Now let’s calculate TH∗X = TFp[y] = (TFp[x])Cp−1 . But TH∗CP∞ = H∗map(BZ/p,CP∞) =
H∗(Z/p× CP∞) – we can calculate this fairly easily using that CP∞ is an Eilenberg-Mac Lane space.

TH∗CP∞ = (Fp[x])×Z/p.
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The group Cp−1 acts on the Fp[x] factor as well as, by multiplication, on the exponent. So

TFp[y] ∼= Fp[x]Cp−1 × (Fp[x]×F
×
p )Cp−1 ∼= Fp[y]× Fp[x].

This is the cohomology of X t CP∞. By Lannes’ theorem,

X t (CP∞)p
∼

map (BZ/p,X).

This has two components, one of which, TφH∗X ∼= H∗CP∞, corresponds to a map φ : H∗X → H∗CP∞ ⊆
H∗BZ/p, and the composite

(CP∞)p → map(BZ/p,X)→ X,

where the right-hand map is evaluation at the basepoint, realizes φ. This is the p-compact maximal torus.
If this map can be made Cp−1-equivariant, we get an equivalence

(ECp−1 ×Cp−1
(CP∞)p)p

∼→ X.

The last step, then, is to study automorphisms of B = (CP∞)p over X. That is, we should study the spaces
of maps

mapX(B,B) //

��

map(B,B)

��
{φ} // map(B,X).

We want to find a lift in the diagram

mapX(B,B)

��
Cp−1

88

// [B,B]/[φ].

So far, we’ve done a similar analysis for the simpler diagram

map(BZ/p,B) //

��

map(BZ/p,B)

��
{φ ◦ i} // map(BZ/p,X),

where i : BZ/p→ (CP∞)p.
This is the program from now on. We’ll take A = Fp[x1, . . . , xn], with |xi| = 2di and p - d1 · · · dn.

Theorem 3 (Adams-Wilkerson). There is a map A → H∗((BS1)×n) = Fp[t1, . . . , tn], and a finite group
W ⊆ GLn(Zp) of order d1 · · · dn, with A = Fp[t1, . . . , tn]W .

Theorem 4 (Clark-Ewing). We won’t prove this theorem, but it classifies such W , called p-adic reflection
groups, and proves that A is actually the cohomology of a space, namely EW ×W ((BS1)×n)p.

Theorem 5 (Dwyer-Miller-Wilkerson). They proved uniqueness: if H∗X ∼= A, then it has a maximal torus
and a W -action.
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