Lecture 22: *p*-compact groups

Paul VanKoughnett

November 19, 2014

Question: Let p > 2 and $A = \mathbb{F}_p[x_1, \ldots, x_n] \in \mathcal{K}$. Is there a space X such that $H^*X \cong A$? If there is one, how many are there?

Note that if X is such a space and X is simply connected, $H^*\Omega X = \Lambda(y_1, \ldots, y_n)$. So we have a related question:

Question': Classify all loop spaces ΩX with $H^*\Omega X$ finite.

This is the beginning of the *p*-compact group story. A (**Dwyer-Wilkerson**) *p*-compact group is a *p*-complete space X so that ΩX is connected and $H^*\Omega X$ is finite. (The 'group' is the space, not its loop space: the classifying space of a Lie group, rather than the Lie group itself. Confusing.) The problem of classifying *p*-compact groups has been solved, fairly recently in fact – it's not well-known in the US, but it's a popular subject in Europe.

Example 1. $(BG)_p = (\mathbb{F}_p)_{\infty}BG$ where G is a 1-connected Lie group.

Example 2. BU(n), with $H^*BU(n) \cong \mathbb{F}_p[c_1, \ldots, c_n]$. In fact, this has more structure than just this cohomology ring: there's a map

$$(\mathbb{C}P^{\infty})^{\times n} \cong BU(1)^{\times n} \to BU(n)$$

with the property $H^*BU(n) \xrightarrow{\simeq} H^*(BU(1)^{\times}n)^{\Sigma_n}$. In fact, this comes out of the Lie group structure of U(n): $U(1)^{\times n}$ is a maximal torus $T \subseteq U(n)$, and Σ_n is the Weyl group N(T)/T.

Question: Given a *p*-compact group X, can you produce a maximal torus

$$(BU(1)_n^{\times})_p \to X_p?$$

A Weyl group? An element of order p, i. e. a map $B\mathbb{Z}/p \to X$? To do these things in Lie group theory, you need to actually use analysis. Here, surprisingly, we can use the *T*-functor.

Here's a toy case: $(\mathbb{C}P^{\infty})_p = (BU(1))_p = K(\mathbb{Z}_p, 2)$. \mathbb{Z}_p^{\times} contains a copy of $\mathbb{F}_p^{\times} = C_{p-1}$, which acts on $K(\mathbb{Z}_p, 2)$ (since K(G, n) is functorial in G). Let Y be the homotopy orbits $EC_{p-1} \times_{C_{p-1}} K(\mathbb{Z}_p, 2)$. We have

$$H^{*}(Y, \mathbb{F}_{p}) = (H^{*}\mathbb{C}P^{\infty})^{C_{p-1}} = (\mathbb{F}_{p}[x])^{C_{p-1}} = \mathbb{F}_{p}[y]$$

where |y| = 2(p-1), $y = x^{p-1}$. (The action is just via $C_{p-1} \cong \mathbb{F}_p^{\times}$ multiplying on x.) This is an exclusively p-complete thing: C_{p-1} doesn't act on the integers. Y isn't simply connected, so we have to p-complete again. $Z = Y_p$ is simply connected and has $\Omega Z \simeq S_p^{2p-3}$, meaning that this p-complete sphere has an H-space structure.

Let's reverse engineer this. Let X be a p-complete space with $H^*X \cong \mathbb{F}_p[y]$, |y| = 2(p-1). The Steenrod algebra structure is forced by $\mathcal{P}^{p-1}(y) = y^p$. In fact, there's an Adem relation

$$\underbrace{\mathcal{P}^1 \cdots \mathcal{P}^1}_i = \binom{p-i}{i} \mathcal{P}^i$$

for $0 \leq i \leq p-1$, so $\mathcal{P}^i(y) = \binom{p-i}{i} y^{1+i}$, and $\mathcal{P}^i(y) = 0$ for i > p-1. We get a map in \mathcal{K} , $H^*X \to \mathbb{F}_p[x] = H^* \mathbb{C}P^{\infty}$, with $y \mapsto x^{p-1}$. Algebraically, we've adjoined a (p-1)st root of y – that is, $\mathbb{F}_p[x] = (H^*X)[z]/(z^{p-1}-y)$. The roots of $z^{p-1}-y$ are $ax, a \in \mathbb{F}_p^{\times}$.

Now let's calculate $TH^*X = T\mathbb{F}_p[y] = (T\mathbb{F}_p[x])^{C_{p-1}}$. But $TH^*\mathbb{C}P^{\infty} = H^* \operatorname{map}(B\mathbb{Z}/p, \mathbb{C}P^{\infty}) = H^*(\mathbb{Z}/p \times \mathbb{C}P^{\infty})$ – we can calculate this fairly easily using that $\mathbb{C}P^{\infty}$ is an Eilenberg-Mac Lane space.

$$TH^*\mathbb{C}P^\infty = (\mathbb{F}_p[x])^{\times\mathbb{Z}/p}.$$

The group C_{p-1} acts on the $\mathbb{F}_p[x]$ factor as well as, by multiplication, on the exponent. So

$$T\mathbb{F}_p[y] \cong \mathbb{F}_p[x]^{C_{p-1}} \times (\mathbb{F}_p[x]^{\times \mathbb{F}_p^{\times}})^{C_{p-1}} \cong \mathbb{F}_p[y] \times \mathbb{F}_p[x].$$

This is the cohomology of $X \sqcup \mathbb{C}P^{\infty}$. By Lannes' theorem,

$$X \sqcup (\mathbb{C}P^{\infty})_p \underset{map}{\operatorname{map}} (B\mathbb{Z}/p, X).$$

This has two components, one of which, $T^{\phi}H^*X \cong H^*\mathbb{C}P^{\infty}$, corresponds to a map $\phi: H^*X \to H^*\mathbb{C}P^{\infty} \subseteq H^*B\mathbb{Z}/p$, and the composite

$$(\mathbb{C}P^{\infty})_p \to \max(B\mathbb{Z}/p, X) \to X,$$

where the right-hand map is evaluation at the basepoint, realizes ϕ . This is the *p*-compact maximal torus.

If this map can be made C_{p-1} -equivariant, we get an equivalence

$$(EC_{p-1} \times_{C_{p-1}} (\mathbb{C}P^{\infty})_p)_p \xrightarrow{\sim} X.$$

The last step, then, is to study automorphisms of $B = (\mathbb{C}P^{\infty})_p$ over X. That is, we should study the spaces of maps

We want to find a lift in the diagram

So far, we've done a similar analysis for the simpler diagram

where $i: B\mathbb{Z}/p \to (\mathbb{C}P^{\infty})_p$.

This is the program from now on. We'll take $A = \mathbb{F}_p[x_1, \ldots, x_n]$, with $|x_i| = 2d_i$ and $p \nmid d_1 \cdots d_n$.

Theorem 3 (Adams-Wilkerson). There is a map $A \to H^*((BS^1)^{\times n}) = \mathbb{F}_p[t_1, \ldots, t_n]$, and a finite group $W \subseteq GL_n(\mathbb{Z}_p)$ of order $d_1 \cdots d_n$, with $A = \mathbb{F}_p[t_1, \ldots, t_n]^W$.

Theorem 4 (Clark-Ewing). We won't prove this theorem, but it classifies such W, called p-adic reflection groups, and proves that A is actually the cohomology of a space, namely $EW \times_W ((BS^1)^{\times n})_p$.

Theorem 5 (Dwyer-Miller-Wilkerson). They proved uniqueness: if $H^*X \cong A$, then it has a maximal torus and a W-action.