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Theorem 1 (Adams-Wilkerson). Let A = Fp[x1, . . . , xn] ∈ K, with |xi| = 2di and p - 2d1 · · · dn. There is
an embedding in K, A→ B = Fp[t1, . . . , tn], with |ti| = 2, such that if W = AutA/K(B), then A = BW .

Idea of proof. Let A → B∞ be the separable closure of A in the category of graded algebras. Let B ⊆ B∞
be the maximal subextension A ⊆ B in K. (This will turn out to equal B∞, though that won’t be clear for
a while. Define Q0 = P1, Qn = [Ppn

, Qn−1]. These are “derivations” in A.

Lemma 2. There are elements ci ∈ A, ci 6= 0, so that

c0Q0 + · · ·+ cnQn = 0

on B.

Let f(x) = c0x + c1x
p + · · · + cnx

pn ∈ A[x]. One shows that this splits over B, and the subalgebra
generated by the roots is Fp[t1, . . . , tn] ⊆ B. Then you have to show that Fp[t1, . . . , tn] = B = B∞.

Remark 3. A priori, W ⊆ GLn(Fp), but in fact, it lifts to GLn(Zp). It is called a p-adic reflection group,
since for g ∈W , rank(g − 1) ≤ 1.

Note that H∗(EW ×W B̂T ) ∼= BW ∼= A, where B̂T = (CP∞ × · · · × CP∞)p = K(Zn
p , 2).

Theorem 4 (Dwyer-Miller-Wilkerson). Let X be p-complete, H∗X ∼= A. Then there is a maximal torus

f : B̂T → X realizing the inclusion A ⊆ B. If map+
X(B̂T , B̂T ) is the ‘Weyl space’ of self-equivalences of B̂T

over X, then map+
X(B̂T , B̂T ) is discrete and isomorphic to the Weyl group W .

Corollary 5. The map B̂T → X can be made W -equivariant, and induces a weak equivalence (EW ×W

B̂T )p
∼→ X.

The map f can be produced using Lannes theory, which is why we’re even talking about this theorem.

Lemma 6. Let V1 be a finite-dimension Fp-vector space, and V2 = H2B̂T ∼= Fn
p . Then

TV1
H∗B̂T ∼= H∗B̂T ⊗ FHom(V1,V2)

p ,

with the second factor in degree zero.

Proof. If V1 = Fk
p, then TV1

= T ◦k. Also, H∗B̂T ∼= Fp[t1]⊗ · · · ⊗ Fp[tn]. Thus,

T (H∗B̂T ) ∼= T (Fp[t1]⊗ · · · ⊗ Fp[tn])
∼= T (Fp[t1])⊗ · · · ⊗ T (Fp[tn])

∼= (Fp[t1]⊗ FFp
p )⊗ · · · ⊗ (Fp[tn]⊗ FFp

p )

∼= H∗B̂T ⊗ FHom(Fp,V2)
p .

By induction, we get TFk
p
(H∗B̂T ) = TH∗B̂T ⊗ FHom(Fk

p,V2)
p .
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Theorem 7. Let i : H∗X = A → B = H∗B̂T be the inclusion above, and let V = V1 = V2. Then T 1
V H

∗X

(the component corresponding to the identity) is isomorphic to H∗B̂T .

Proof.
TV H

∗X = (TV H
∗B̂T )W = (H∗B̂T ⊗ FHom(V,V )

p )W .

W acts on H∗B̂T and Hom(V, V ) ⊇ GLn(Fp). Thew orbit of the identity is a free W -orbit, so the corre-

sponding component is H∗B̂T . (Meanwhile, if we’d taken the orbit of zero, we’d have gotten H∗X as the
fixed points).

Finally, by Lannes theory and the above theorem, we get f : B̂T → X.

Theorem 8.
map+

X(B̂T , B̂T ) 'W.

Proof. We want to bring this down to a calculation of mapX(BV, B̂T ), using the inclusion BV → B̂T which

is the fiber of Bp : B̂T → B̂T ; we can then calculate this using the T -functor.
Step 1: Let q : E → B be any fibration, and Y any space. Then there is a fibration

q̇ : map(q, Y )→ B

such that the space of sections RΓ(q̇) is weakly equivalent to map(E, Y ). This is the space of maps of the
form

map(q, Y )

��
B

::

B.

By mumbo-jumbo, the fiber of q̇ is map(F, Y ).
Step 2: You can relativize this. Start with a diagram

Y

g

��
E

f
//

q

��

X

B

with q a fibration. We then get a diagram

mapX(q, Y )

q̇X

��

// map(q, Y )

g∗

��
B

f
// map(q,X),

used to define mapX(q, Y ). Moreover, RΓ(q̇X) = mapX(E, Y ), the space of diagrams

Y

g

��
E

f
//

>>

X.

The fiber of q̇X is mapX(F, Y ).

Step 3: Specialize to the case where f = g : B̂T → X, and q = Bp : B̂T → B̂T , with fiber F = BV .
Then q̇X is a map mapX(Bp,BT )→ B̂T , and RΓ(q̇X) = mapX(B̂T , B̂T ). The fiber of q̇X is mapX(BV, B̂T ).
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Step 4: We’re still not done because we haven’t restricted to self-equivalences. Let map+
X(B̂T , B̂T )

be the space of weak equivalences over X, and in general, let map+
X(·, ·) be the space of maps which are

monomorphisms on cohomology. Then q̇+X : map+
X(B̂T , B̂T )→ B̂T has RΓ(q̇+X) = map+

X(B̂T , B̂T ), and the

fiber is map+
X(BV, B̂T ).

Step 5: Show map+
X(BV, B̂T ) ∼= W . Since B̂T is simply connected (it’s K(Zn

p , 2)), by covering space

theory, map+
X(Bp, B̂T ) = W × B̂T → B̂T , and its space of sections is W . This proves the theorem.
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