Lecture 23: The Dwyer-Miller-Wilkerson theorem

Paul VanKoughnett

November 24, 2014

Theorem 1 (Adams-Wilkerson). Let $A = \mathbb{F}_p[x_1, \ldots, x_n] \in \mathcal{K}$, with $|x_i| = 2d_i$ and $p \nmid 2d_1 \cdots d_n$. There is an embedding in \mathcal{K} , $A \to B = \mathbb{F}_p[t_1, \ldots, t_n]$, with $|t_i| = 2$, such that if $W = \operatorname{Aut}_{A/\mathcal{K}}(B)$, then $A = B^W$.

Idea of proof. Let $A \to B_{\infty}$ be the separable closure of A in the category of graded algebras. Let $B \subseteq B_{\infty}$ be the maximal subextension $A \subseteq B$ in \mathcal{K} . (This will turn out to equal B_{∞} , though that won't be clear for a while. Define $Q_0 = \mathcal{P}^1$, $Q_n = [\mathcal{P}^{p^n}, Q_{n-1}]$. These are "derivations" in \mathcal{A} .

Lemma 2. There are elements $c_i \in A$, $c_i \neq 0$, so that

$$c_0 Q_0 + \dots + c_n Q_n = 0$$

 $on \ B.$

Let $f(x) = c_0 x + c_1 x^p + \dots + c_n x^{p^n} \in A[x]$. One shows that this splits over B, and the subalgebra generated by the roots is $\mathbb{F}_p[t_1, \dots, t_n] \subseteq B$. Then you have to show that $\mathbb{F}_p[t_1, \dots, t_n] = B = B_{\infty}$. \Box

Remark 3. A priori, $W \subseteq GL_n(\mathbb{F}_p)$, but in fact, it lifts to $GL_n(\mathbb{Z}_p)$. It is called a *p*-adic reflection group, since for $g \in W$, rank $(g-1) \leq 1$.

Note that $H^*(EW \times_W \widehat{BT}) \cong B^W \cong A$, where $\widehat{BT} = (\mathbb{C}P^\infty \times \cdots \times \mathbb{C}P^\infty)_p = K(\mathbb{Z}_p^n, 2).$

Theorem 4 (Dwyer-Miller-Wilkerson). Let X be p-complete, $H^*X \cong A$. Then there is a maximal torus $f: \widehat{BT} \to X$ realizing the inclusion $A \subseteq B$. If $\operatorname{map}_X^+(\widehat{BT}, \widehat{BT})$ is the 'Weyl space' of self-equivalences of \widehat{BT} over X, then $\operatorname{map}_X^+(\widehat{BT}, \widehat{BT})$ is discrete and isomorphic to the Weyl group W.

Corollary 5. The map $\widehat{BT} \to X$ can be made W-equivariant, and induces a weak equivalence $(EW \times_W \widehat{BT})_p \xrightarrow{\sim} X$.

The map f can be produced using Lannes theory, which is why we're even talking about this theorem.

Lemma 6. Let V_1 be a finite-dimension \mathbb{F}_p -vector space, and $V_2 = H_2 \widehat{BT} \cong \mathbb{F}_p^n$. Then

$$T_{V_1}H^*\widehat{BT}\cong H^*\widehat{BT}\otimes \mathbb{F}_n^{\mathrm{Hom}(V_1,V_2)}$$

with the second factor in degree zero.

Proof. If $V_1 = \mathbb{F}_p^k$, then $T_{V_1} = T^{\circ k}$. Also, $H_*\widehat{BT} \cong \mathbb{F}_p[t_1] \otimes \cdots \otimes \mathbb{F}_p[t_n]$. Thus,

$$T(H^*BT) \cong T(\mathbb{F}_p[t_1] \otimes \cdots \otimes \mathbb{F}_p[t_n])$$

$$\cong T(\mathbb{F}_p[t_1]) \otimes \cdots \otimes T(\mathbb{F}_p[t_n])$$

$$\cong (\mathbb{F}_p[t_1] \otimes \mathbb{F}_p^{\mathbb{F}_p}) \otimes \cdots \otimes (\mathbb{F}_p[t_n] \otimes \mathbb{F}_p^{\mathbb{F}_p})$$

$$\cong H^*\widehat{BT} \otimes \mathbb{F}_p^{\mathrm{Hom}(\mathbb{F}_p, V_2)}.$$

By induction, we get $T_{\mathbb{F}_p^k}(H^*\widehat{BT}) = TH^*\widehat{BT} \otimes \mathbb{F}_p^{\operatorname{Hom}(\mathbb{F}_p^k, V_2)}$.

Theorem 7. Let $i: H^*X = A \to B = H^*\widehat{BT}$ be the inclusion above, and let $V = V_1 = V_2$. Then $T_V^1H^*X$ (the component corresponding to the identity) is isomorphic to $H^*\widehat{BT}$.

Proof.

$$T_V H^* X = (T_V H^* \widehat{BT})^W = (H^* \widehat{BT} \otimes \mathbb{F}_n^{\mathrm{Hom}(V,V)})^W$$

W acts on $H^*\widehat{BT}$ and $\operatorname{Hom}(V,V) \supseteq GL_n(\mathbb{F}_p)$. Thew orbit of the identity is a free *W*-orbit, so the corresponding component is $H^*\widehat{BT}$. (Meanwhile, if we'd taken the orbit of zero, we'd have gotten H^*X as the fixed points).

Finally, by Lannes theory and the above theorem, we get $f: \widehat{BT} \to X$.

Theorem 8.

$$\operatorname{map}_X^+(\widehat{BT},\widehat{BT})\simeq W.$$

Proof. We want to bring this down to a calculation of $\operatorname{map}_X(BV, \widehat{BT})$, using the inclusion $BV \to \widehat{BT}$ which is the fiber of $Bp: \widehat{BT} \to \widehat{BT}$; we can then calculate this using the *T*-functor.

Step 1: Let $q: E \to B$ be any fibration, and Y any space. Then there is a fibration

$$\dot{q}: \operatorname{map}(q, Y) \to B$$

such that the space of sections $R\Gamma(\dot{q})$ is weakly equivalent to map(E, Y). This is the space of maps of the form

By mumbo-jumbo, the fiber of \dot{q} is map(F, Y).

Step 2: You can relativize this. Start with a diagram

 $E \xrightarrow{f} X$

used to define map_X(q, Y). Moreover, $R\Gamma(\dot{q}_X) = \max_X(E, Y)$, the space of diagrams

The fiber of \dot{q}_X is map_X(F, Y).

Step 3: Specialize to the case where $f = g : \widehat{BT} \to X$, and $q = Bp : \widehat{BT} \to \widehat{BT}$, with fiber F = BV. Then \dot{q}_X is a map map_X $(Bp, BT) \to \widehat{BT}$, and $R\Gamma(\dot{q}_X) = \max_X(\widehat{BT}, \widehat{BT})$. The fiber of \dot{q}_X is map_X (BV, \widehat{BT}) . **Step 4:** We're still not done because we haven't restricted to self-equivalences. Let $\operatorname{map}_X^+(\widehat{BT}, \widehat{BT})$ be the space of weak equivalences over X, and in general, let $\operatorname{map}_X^+(\cdot, \cdot)$ be the space of maps which are monomorphisms on cohomology. Then $\dot{q}_X^+ : \operatorname{map}_X^+(\widehat{BT}, \widehat{BT}) \to \widehat{BT}$ has $R\Gamma(\dot{q}_X^+) = \operatorname{map}_X^+(\widehat{BT}, \widehat{BT})$, and the fiber is $\operatorname{map}_X^+(BV, \widehat{BT})$.

Step 5: Show $\operatorname{map}_X^+(BV, \widehat{BT}) \cong W$. Since \widehat{BT} is simply connected (it's $K(\mathbb{Z}_p^n, 2))$, by covering space theory, $\operatorname{map}_X^+(Bp, \widehat{BT}) = W \times \widehat{BT} \to \widehat{BT}$, and its space of sections is W. This proves the theorem. \Box