Lecture 23: The Dwyer-Miller-Wilkerson theorem

Paul VanKoughnett

November 24, 2014

Theorem 1 (Adams-Wilkerson). Let $A=\mathbb{F}_{p}\left[x_{1}, \ldots, x_{n}\right] \in \mathcal{K}$, with $\left|x_{i}\right|=2 d_{i}$ and $p \nmid 2 d_{1} \cdots d_{n}$. There is an embedding in $\mathcal{K}, A \rightarrow B=\mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]$, with $\left|t_{i}\right|=2$, such that if $W=\operatorname{Aut}_{A / \mathcal{K}}(B)$, then $A=B^{W}$.

Idea of proof. Let $A \rightarrow B_{\infty}$ be the separable closure of A in the category of graded algebras. Let $B \subseteq B_{\infty}$ be the maximal subextension $A \subseteq B$ in \mathcal{K}. (This will turn out to equal B_{∞}, though that won't be clear for a while. Define $Q_{0}=\mathcal{P}^{1}, Q_{n}=\left[\mathcal{P}^{p^{n}}, Q_{n-1}\right]$. These are "derivations" in \mathcal{A}.
Lemma 2. There are elements $c_{i} \in A, c_{i} \neq 0$, so that

$$
c_{0} Q_{0}+\cdots+c_{n} Q_{n}=0
$$

on B.
Let $f(x)=c_{0} x+c_{1} x^{p}+\cdots+c_{n} x^{p^{n}} \in A[x]$. One shows that this splits over B, and the subalgebra generated by the roots is $\mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right] \subseteq B$. Then you have to show that $\mathbb{F}_{p}\left[t_{1}, \ldots, t_{n}\right]=B=B_{\infty}$.
Remark 3. A priori, $W \subseteq G L_{n}\left(\mathbb{F}_{p}\right)$, but in fact, it lifts to $G L_{n}\left(\mathbb{Z}_{p}\right)$. It is called a p-adic reflection group, since for $g \in W, \operatorname{rank}(g-1) \leq 1$.

Note that $H^{*}\left(E W \times_{W} \widehat{B T}\right) \cong B^{W} \cong A$, where $\widehat{B T}=\left(\mathbb{C} P^{\infty} \times \cdots \times \mathbb{C} P^{\infty}\right)_{p}=K\left(\mathbb{Z}_{p}^{n}, 2\right)$.
Theorem 4 (Dwyer-Miller-Wilkerson). Let X be p-complete, $H^{*} X \cong A$. Then there is a maximal torus $f: \widehat{B T} \rightarrow X$ realizing the inclusion $A \subseteq B$. If $\operatorname{map}_{X}^{+}(\widehat{B T}, \widehat{B T})$ is the 'Weyl space' of self-equivalences of $\widehat{B T}$ over X, then $\operatorname{map}_{X}^{+}(\widehat{B T}, \widehat{B T})$ is discrete and isomorphic to the Weyl group W.

Corollary 5. The map $\widehat{B T} \rightarrow X$ can be made W-equivariant, and induces a weak equivalence $\left(E W \times{ }_{W}\right.$ $\widehat{B T})_{p} \xrightarrow{\sim} X$.

The map f can be produced using Lannes theory, which is why we're even talking about this theorem.
Lemma 6. Let V_{1} be a finite-dimension \mathbb{F}_{p}-vector space, and $V_{2}=H_{2} \widehat{B T} \cong \mathbb{F}_{p}^{n}$. Then

$$
T_{V_{1}} H^{*} \widehat{B T} \cong H^{*} \widehat{B T} \otimes \mathbb{F}_{p}^{\operatorname{Hom}\left(V_{1}, V_{2}\right)}
$$

with the second factor in degree zero.
Proof. If $V_{1}=\mathbb{F}_{p}^{k}$, then $T_{V_{1}}=T^{\circ k}$. Also, $H_{*} \widehat{B T} \cong \mathbb{F}_{p}\left[t_{1}\right] \otimes \cdots \otimes \mathbb{F}_{p}\left[t_{n}\right]$. Thus,

$$
\begin{aligned}
T\left(H^{*} \widehat{B T}\right) & \cong T\left(\mathbb{F}_{p}\left[t_{1}\right] \otimes \cdots \otimes \mathbb{F}_{p}\left[t_{n}\right]\right) \\
& \cong T\left(\mathbb{F}_{p}\left[t_{1}\right]\right) \otimes \cdots \otimes T\left(\mathbb{F}_{p}\left[t_{n}\right]\right) \\
& \cong\left(\mathbb{F}_{p}\left[t_{1}\right] \otimes \mathbb{F}_{p}^{\mathbb{F}_{p}}\right) \otimes \cdots \otimes\left(\mathbb{F}_{p}\left[t_{n}\right] \otimes \mathbb{F}_{p}^{\mathbb{F}_{p}}\right) \\
& \cong H^{*} \widehat{B T} \otimes \mathbb{F}_{p}^{\operatorname{Hom}\left(\mathbb{F}_{p}, V_{2}\right)}
\end{aligned}
$$

By induction, we get $T_{\mathbb{F}_{p}^{k}}\left(H^{*} \widehat{B T}\right)=T H^{*} \widehat{B T} \otimes \mathbb{F}_{p}^{\operatorname{Hom}\left(\mathbb{F}_{p}^{k}, V_{2}\right)}$.

Theorem 7. Let $i: H^{*} X=A \rightarrow B=H^{*} \widehat{B T}$ be the inclusion above, and let $V=V_{1}=V_{2}$. Then $T_{V}^{1} H^{*} X$ (the component corresponding to the identity) is isomorphic to $H^{*} \widehat{B T}$.

Proof.

$$
T_{V} H^{*} X=\left(T_{V} H^{*} \widehat{B T}\right)^{W}=\left(H^{*} \widehat{B T} \otimes \mathbb{F}_{p}^{\operatorname{Hom}(V, V)}\right)^{W}
$$

W acts on $H^{*} \widehat{B T}$ and $\operatorname{Hom}(V, V) \supseteq G L_{n}\left(\mathbb{F}_{p}\right)$. Thew orbit of the identity is a free W-orbit, so the corresponding component is $H^{*} \widehat{B T}$. (Meanwhile, if we'd taken the orbit of zero, we'd have gotten $H^{*} X$ as the fixed points).

Finally, by Lannes theory and the above theorem, we get $f: \widehat{B T} \rightarrow X$.

Theorem 8.

$$
\operatorname{map}_{X}^{+}(\widehat{B T}, \widehat{B T}) \simeq W
$$

Proof. We want to bring this down to a calculation of $\operatorname{map}_{X}(B V, \widehat{B T})$, using the inclusion $B V \rightarrow \widehat{B T}$ which is the fiber of $B p: \widehat{B T} \rightarrow \widehat{B T}$; we can then calculate this using the T-functor.

Step 1: Let $q: E \rightarrow B$ be any fibration, and Y any space. Then there is a fibration

$$
\dot{q}: \operatorname{map}(q, Y) \rightarrow B
$$

such that the space of sections $R \Gamma(\dot{q})$ is weakly equivalent to $\operatorname{map}(E, Y)$. This is the space of maps of the form

By mumbo-jumbo, the fiber of \dot{q} is $\operatorname{map}(F, Y)$.
Step 2: You can relativize this. Start with a diagram

with q a fibration. We then get a diagram

used to define $\operatorname{map}_{X}(q, Y)$. Moreover, $R \Gamma\left(\dot{q}_{X}\right)=\operatorname{map}_{X}(E, Y)$, the space of diagrams

The fiber of \dot{q}_{X} is $\operatorname{map}_{X}(F, Y)$.
Step 3: Specialize to the case where $f=g: \widehat{B T} \rightarrow X$, and $q=B p: \widehat{B T} \rightarrow \widehat{B T}$, with fiber $F=B V$. Then \dot{q}_{X} is a map $\operatorname{map}_{X}(B p, B T) \rightarrow \widehat{B T}$, and $R \Gamma\left(\dot{q}_{X}\right)=\operatorname{map}_{X}(\widehat{B T}, \widehat{B T})$. The fiber of \dot{q}_{X} is $\operatorname{map}_{X}(B V, \widehat{B T})$.

Step 4: We're still not done because we haven't restricted to self-equivalences. Let map ${ }_{X}^{+}(\widehat{B T}, \widehat{B T})$ be the space of weak equivalences over X, and in general, let map ${ }_{X}^{+}(\cdot, \cdot)$ be the space of maps which are monomorphisms on cohomology. Then $\dot{q}_{X}^{+}: \operatorname{map}_{X}^{+}(\widehat{B T}, \widehat{B T}) \rightarrow \widehat{B T}$ has $R \Gamma\left(\dot{q}_{X}^{+}\right)=\operatorname{map}_{X}^{+}(\widehat{B T}, \widehat{B T})$, and the fiber is $\operatorname{map}_{X}^{+}(B V, \widehat{B T})$.

Step 5: Show $\operatorname{map}_{X}^{+}(B V, \widehat{B T}) \cong W$. Since $\widehat{B T}$ is simply connected (it's $K\left(\mathbb{Z}_{p}^{n}, 2\right)$), by covering space theory, $\operatorname{map}_{X}^{+}(B p, \widehat{B T})=W \times \widehat{B T} \rightarrow \widehat{B T}$, and its space of sections is W. This proves the theorem.

