# Lecture 3: Odd primes and homological algebra 

October 3, 2014

A few words about Steenrod operations at odd primes. Here we have a new operation, namely the Bockstein. THe short exact sequence

$$
0 \rightarrow \mathbb{Z} / p \rightarrow \mathbb{Z} / p^{2} \rightarrow \mathbb{Z} / p \rightarrow 0
$$

gives a long exact sequence in cohomology with

$$
\cdots \rightarrow H^{n}\left(X ; \mathbb{Z} / p^{2}\right) \rightarrow H^{n}(X ; \mathbb{Z} / p) \xrightarrow{\beta} H^{n+1}(X ; \mathbb{Z} / p) \rightarrow \cdots
$$

where $\beta$ is the Bockstein.
We can do this at $p=2$, of course, but in this case $\beta=\mathrm{Sq}^{1}$. Note that $\beta^{2}=0$, at all primes. We also have a Leibniz rule

$$
\beta(x y)=\beta(x) y+(-1)^{|x|} x \beta(y) .
$$

There are Steenrod operations

$$
\mathcal{P}^{i}: H^{n}(X)=H^{n}(X ; \mathbb{Z} / p) \rightarrow H^{n+2 i(p-1)}(X) .
$$

This is the first place that you see the number $2(p-1)$, which is everywhere in topology. Again, these operations are subject to some axioms.

1. $\mathcal{P}^{0}(x)=x$ and $\mathcal{P}^{i}(x)=0$ if $2 i>|x|$.
2. $\mathcal{P}^{n}(x)=x^{p}$ if $|x|=2 n$. (These two are the unstable relations.)
3. $\mathcal{P}^{i}(x y)=\sum \mathcal{P}^{j} x \cdot \mathcal{P}^{k} y$.
4. There are Adem relations, which will remain unspoken.

Remark 1. Because of the Leibniz rule, $\beta\left(x^{p}\right)=p x(\beta x)^{p-1}=0$, when $x$ is in even degree. We can generalize the other unstable relation to $\beta^{\epsilon} \mathcal{P}^{i}(x)=0$ if $2 i+\epsilon>n$, where $\epsilon=0$ or 1 .

The general Steenrod operation, then, can be written as

$$
\mathcal{P}^{I}=\beta^{\epsilon_{0}} \mathcal{P}^{i_{1}} \beta^{\epsilon_{1}} \ldots \mathcal{P}^{i_{s}} \beta^{\epsilon_{s}}
$$

where $i_{t} \geq 0, \epsilon=0$ or 1 . This is admissible if $i_{t} \geq p i_{t+1}+\epsilon_{t}$. The excess is

$$
e(I)=2 i_{1}+\epsilon_{0}-\sum_{t>1} 2 i_{t}(p-1)-\sum_{t>0} \epsilon_{t} .
$$

Again, the admissible monomials form a basis for the Steenrod algebra. If $e(I)>n$, then $\mathcal{P}^{I}(x)=0$ for $x \in H^{n} X$. Again, we have functors

$$
\mathcal{K} \stackrel{U}{\rightleftarrows} \mathcal{U} \stackrel{\Omega^{\infty}}{\rightleftarrows} \operatorname{Mod}_{\mathcal{A}},
$$

where $\mathcal{K}$ is the category of unstable algebras, $\mathcal{U}$ that of unstable modules, and $\operatorname{Mod}_{\mathcal{A}}$ that of all modules.

Example 2. Let $C_{p}$ be the $p$ th roots of unity. This is a subgroup of $S^{1}$, which acts on $S^{2 n+1} \subseteq \mathbb{C}^{n+1}$, and these actions are compatible with the inclusions $\mathbb{C}^{n+1} \hookrightarrow \mathbb{C}^{n+2}$. Thus we can define

$$
B C_{p}=\bigcup_{n} S^{2 n+1} / C_{p}
$$

This has the properties that $\pi_{1} B C_{p}=C_{p}$ and $\pi_{n} B C_{p}=0$ for $n \geq 1$ (the universal cover is contractible). We have $H^{*} B C_{p} \cong E(x) \otimes \mathbb{F}_{p}[y]$, the tensor product of an exterior algebra generated in degree 1 and a polynomial algebra generated in degree 2. Almost the only thing that can happen does: $\beta x=y$, and $\mathcal{P}^{1} y=y^{p}$ induces all the further Steenrod operations.

## Homological algebra of unstable modules

Let $M \in \operatorname{Mod}_{\mathcal{A}}$. Then $\operatorname{Hom}_{\mathcal{A}}\left(\Sigma^{n} \mathcal{A}, M\right) \cong M^{n}$, the degree $n$ elements of $M$. Here we have defined $\left(\Sigma^{n} N\right)^{k+n}=N^{k}$, so that $\Sigma \widetilde{H}^{*} X=\Sigma \widetilde{H}^{*} X . \Sigma^{n} A$, then, is the free module on one generator in degree $n$.

If $M \in \mathcal{U}$, then

$$
\operatorname{Hom}_{\mathcal{A}}\left(\Sigma^{n} \mathcal{A}, M\right) \cong \operatorname{Hom}_{\mathcal{U}}\left(\Omega^{\infty} \Sigma^{n} \mathcal{A}, M\right) \cong M^{n}
$$

Definition 3. We define $F(n)=\Omega^{\infty} \Sigma^{n} M$.
This is evidently projective. What does projective mean? It means that homming out of it preserves exact sequences, or equivalently that a diagram

always has the dotted arrow filling it in. So $F(n)$ is projective because $M \mapsto M^{n}$ is an exact functor.
The category $\mathcal{U}$ has enough projectives, meaning that every module has a surjection from a projective module. Indeed, just take the obvious maps

$$
\bigoplus_{n} \bigoplus_{x \in M^{n}} F(n) \rightarrow M
$$

Having enough projectives means that we can form projective resolutions and thus define derived functors, like $\operatorname{Ext}_{\mathcal{U}}^{s}(M, N)$.
Exercise 4. (At $p=2$ ) The elements $\mathrm{Sq}^{I}\left(i_{n}\right) \in F(n)$, where $\mathrm{Sq}^{I}$ is admissible, $e(I) \leq n$, and $i_{n} \in F(n)_{n}$ is the generator, form a basis.

This means that the $F(n)$ are never free: they have fewer nonzero Steenrod operations than the Steenrod algebra itself. For example, in $F(1)$, we only have the basis elements

$$
\mathrm{Sq}^{2^{k}} \cdots \mathrm{Sq}^{2} \mathrm{Sq}^{1}\left(i_{1}\right)
$$

Also note that $F(1)$ is not the cohomology of any space. If it were, then $\mathrm{Sq}^{1}\left(i_{1}\right)$ would have to be $i_{1}^{2}$, and $\mathrm{Sq}^{2} \mathrm{Sq}^{1}\left(i_{1}\right)=i_{1}^{4}$, but $F(1)^{3}=0$, so $i_{1}^{3}$ would have to vanish. On the other hand,

$$
H^{*}\left(\mathbb{R} P^{\infty}\right)=U(F(n))=\operatorname{Sym}(F(1)) /\left(\mathrm{Sq}^{|x|} x=x^{2}\right) \cong \mathbb{F}_{2}\left[i_{1}\right]
$$

We've been stuck in the 50 s so far, so let's enter the 80 s.
Remark 5. We have an isomorphism

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{U}}(F(n), M) & \cong M^{n} \\
f & \mapsto f\left(i_{n}\right)
\end{aligned}
$$

which means that the functor $M \mapsto F(n)$ is representable. Thus, the Yoneda lemma applies, saying that natural transformations $M^{n} \rightarrow M^{k}$ are in natural bijection with $\mathcal{U}$-module maps $F(k) \rightarrow F(n)$. In particular, if $\theta \in \mathcal{A}^{k}$ is a Steenrod operation, then $\theta: M^{n} \rightarrow M^{n+k}$ has to correspond to a map $F(n+k) \rightarrow F(n)$, which has to correspond to a degree $n+k$ element of $F(n)$, by the adjunction above. And this is just $\theta i_{n}$. What else could it be?

Theorem 6. The functor

$$
\mathcal{U}^{\mathrm{op}} \rightarrow \mathbb{F}_{p}-\text { VectorSpaces }
$$

sending $M^{n}$ to the dual vector space $\left(M^{n}\right)^{*}$ is representable. That is, there is a module $J(n) \in \mathcal{U}$ and a map $\phi_{n}: J(n)^{n} \rightarrow \mathbb{F}_{p}$ such that

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{U}}(M, J(n)) & \xlongequal{\cong}\left(M^{n}\right)^{*} \\
f & \mapsto \phi_{n} \circ f
\end{aligned}
$$

is an isomorphism.
These are the Brown-Gitler modules - they were originally called $G(n)$ for Gitler, and then some French person misheard.

Since $M \rightarrow\left(M^{n}\right)^{*}$ is exact, the modules $J(n)$ are injective, and the category $\mathcal{U}$ has enough injectives (every module can be embedded into an injective).

Proof. If $J(n)$ exists at all, we have to have $J(n)^{k}=\operatorname{Hom}_{\mathcal{U}}(F(k), J(n))=\left(F(k)^{n}\right)^{*}$. So we just define $J(n)$, as a graded vector space, to be the direct sum of $\left(F(k)^{n}\right)^{*}$ in degree $n$. If $\theta \in \mathcal{A}^{s}$, then we need a map

$$
J(n)^{k} \xrightarrow{\theta} J(n)^{k+s},
$$

that is,

$$
\left(F(k)^{n}\right)^{*} \rightarrow\left(F(k+s)^{n}\right)^{*},
$$

and we can take this map to be the dual of $\theta i_{k}: F(k+s) \rightarrow F(k)$ restricted to degree $n$. This defines $J(n)$ as an unstable module.

Note that $J(n)^{n}=\left(F(n)^{n}\right)^{*} \cong \mathbb{F}_{p}^{*}$, defining a map $\phi_{n}: J(n)^{n} \rightarrow \mathbb{F}_{p}$. Thus we get the map

$$
\begin{aligned}
\operatorname{Hom}_{\mathcal{U}}(M, J(n)) & \rightarrow\left(M^{n}\right)^{*} \\
f & \mapsto \phi_{n} \circ f
\end{aligned}
$$

This is an isomorphism if $M=F(k)$. Therefore, it's an isomorphism for all projective $M$, since these are a sum of $F(k)$ and both sides send sums to products. For general $M$, choose (the beginning of) a projective resolution

$$
F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 .
$$

We get


By the five lemma, the right-hand vertical map is an isomorphism. (This proof is a special case of a general theorem called the Special Adjoint Functor Theorem.)

