
Lecture 3: Odd primes and homological algebra

October 3, 2014

A few words about Steenrod operations at odd primes. Here we have a new operation, namely the
Bockstein. THe short exact sequence

0→ Z/p→ Z/p2 → Z/p→ 0

gives a long exact sequence in cohomology with

· · · → Hn(X;Z/p2)→ Hn(X;Z/p) β→ Hn+1(X;Z/p)→ · · ·

where β is the Bockstein.
We can do this at p = 2, of course, but in this case β = Sq1. Note that β2 = 0, at all primes. We also

have a Leibniz rule
β(xy) = β(x)y + (−1)|x|xβ(y).

There are Steenrod operations

Pi : Hn(X) = Hn(X;Z/p)→ Hn+2i(p−1)(X).

This is the first place that you see the number 2(p − 1), which is everywhere in topology. Again, these
operations are subject to some axioms.

1. P0(x) = x and Pi(x) = 0 if 2i > |x|.

2. Pn(x) = xp if |x| = 2n. (These two are the unstable relations.)

3. Pi(xy) =
∑
Pj x · Pk y.

4. There are Adem relations, which will remain unspoken.

Remark 1. Because of the Leibniz rule, β(xp) = px(βx)p−1 = 0, when x is in even degree. We can generalize
the other unstable relation to βε Pi(x) = 0 if 2i+ ε > n, where ε = 0 or 1.

The general Steenrod operation, then, can be written as

PI = βε0 Pi1 βε1 · · · Pis βεs

where it ≥ 0, ε = 0 or 1. This is admissible if it ≥ pit+1 + εt. The excess is

e(I) = 2i1 + ε0 −
∑
t>1

2it(p− 1)−
∑
t>0

εt.

Again, the admissible monomials form a basis for the Steenrod algebra. If e(I) > n, then PI(x) = 0 for
x ∈ HnX. Again, we have functors

K
U
� U

Ω∞

� ModA,

where K is the category of unstable algebras, U that of unstable modules, and ModA that of all modules.
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Example 2. Let Cp be the pth roots of unity. This is a subgroup of S1, which acts on S2n+1 ⊆ Cn+1, and
these actions are compatible with the inclusions Cn+1 ↪→ Cn+2. Thus we can define

BCp =
⋃
n

S2n+1/Cp.

This has the properties that π1BCp = Cp and πnBCp = 0 for n ≥ 1 (the universal cover is contractible). We
have H∗BCp ∼= E(x)⊗Fp[y], the tensor product of an exterior algebra generated in degree 1 and a polynomial
algebra generated in degree 2. Almost the only thing that can happen does: βx = y, and P1 y = yp induces
all the further Steenrod operations.

Homological algebra of unstable modules

Let M ∈ ModA. Then HomA(ΣnA,M) ∼= Mn, the degree n elements of M . Here we have defined

(ΣnN)k+n = Nk, so that ΣH̃∗X = ΣH̃∗X. ΣnA, then, is the free module on one generator in degree
n.

If M ∈ U , then
HomA(ΣnA,M) ∼= HomU (Ω∞ΣnA,M) ∼= Mn.

Definition 3. We define F (n) = Ω∞ΣnM .

This is evidently projective. What does projective mean? It means that homming out of it preserves
exact sequences, or equivalently that a diagram

M

����
F (n) //

<<

N

always has the dotted arrow filling it in. So F (n) is projective because M 7→Mn is an exact functor.
The category U has enough projectives, meaning that every module has a surjection from a projective

module. Indeed, just take the obvious maps⊕
n

⊕
x∈Mn

F (n)→M.

Having enough projectives means that we can form projective resolutions and thus define derived functors,
like ExtsU (M,N).

Exercise 4. (At p = 2) The elements SqI(in) ∈ F (n), where SqI is admissible, e(I) ≤ n, and in ∈ F (n)n is
the generator, form a basis.

This means that the F (n) are never free: they have fewer nonzero Steenrod operations than the Steenrod
algebra itself. For example, in F (1), we only have the basis elements

Sq2k

· · · Sq2 Sq1(i1).

Also note that F (1) is not the cohomology of any space. If it were, then Sq1(i1) would have to be i21,
and Sq2 Sq1(i1) = i41, but F (1)3 = 0, so i31 would have to vanish. On the other hand,

H∗(RP∞) = U(F (n)) = Sym(F (1))/(Sq|x| x = x2) ∼= F2[i1].

We’ve been stuck in the 50s so far, so let’s enter the 80s.

Remark 5. We have an isomorphism

HomU (F (n),M) ∼= Mn

f 7→ f(in)
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which means that the functor M 7→ F (n) is representable. Thus, the Yoneda lemma applies, saying that
natural transformations Mn →Mk are in natural bijection with U-module maps F (k)→ F (n). In particular,
if θ ∈ Ak is a Steenrod operation, then θ : Mn → Mn+k has to correspond to a map F (n + k) → F (n),
which has to correspond to a degree n + k element of F (n), by the adjunction above. And this is just θin.
What else could it be?

Theorem 6. The functor
Uop → Fp−VectorSpaces

sending Mn to the dual vector space (Mn)∗ is representable. That is, there is a module J(n) ∈ U and a map
φn : J(n)n → Fp such that

HomU (M,J(n))
∼=→ (Mn)∗

f 7→ φn ◦ f

is an isomorphism.

These are the Brown-Gitler modules – they were originally called G(n) for Gitler, and then some
French person misheard.

Since M → (Mn)∗ is exact, the modules J(n) are injective, and the category U has enough injectives
(every module can be embedded into an injective).

Proof. If J(n) exists at all, we have to have J(n)k = HomU (F (k), J(n)) = (F (k)n)∗. So we just define J(n),
as a graded vector space, to be the direct sum of (F (k)n)∗ in degree n. If θ ∈ As, then we need a map

J(n)k
θ→ J(n)k+s,

that is,
(F (k)n)∗ → (F (k + s)n)∗,

and we can take this map to be the dual of θik : F (k + s)→ F (k) restricted to degree n. This defines J(n)
as an unstable module.

Note that J(n)n = (F (n)n)∗ ∼= F∗p, defining a map φn : J(n)n → Fp. Thus we get the map

HomU (M,J(n))→ (Mn)∗

f 7→ φn ◦ f

This is an isomorphism if M = F (k). Therefore, it’s an isomorphism for all projective M , since these are a
sum of F (k) and both sides send sums to products. For general M , choose (the beginning of) a projective
resolution

F1 → F0 →M → 0.

We get

HomU (F1, J(n))

∼=
��

HomU (F0, J(n))oo

∼=
��

HomU (M,J(n))oo

��

0oo

(Fn1 )∗ (Fn0 )∗oo Moo 0.oo

By the five lemma, the right-hand vertical map is an isomorphism. (This proof is a special case of a general
theorem called the Special Adjoint Functor Theorem.)
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