
Lecture 4: The Milnor basis

October 3, 2014

Last time we mentioned that the category U of unstable modules has both enough projectives enough
injectives. A generating set of injectives was the modules J(n) with

HomU (M,J(n)) = (Mn)∗,

which is plainly an exact functor of M . A generating set of projectives was the modules

F (n) = Ω∞(ΣnA) = {SqI(in) : e(I) ≤ n}

(at p = 2) with
HomU (F (n),M) = Mn.

In particular,
J(n)k ∼= HomU (F (n), J(k)) = (F (n)k)∗.

For θ ∈ As, there were induced maps θik : F (k + s)→ F (k) and θ : J(n)k → J(n)k+s.
We can draw bases for the F (k) and J(n) simultaneously on a 2-dimensional grid. Each J(n) occupies a

column, each F (k) a row. (The arrows are explained below.)
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It remains to say how the Steenrod operations act. For example, we have Sq1 : F (2) → F (1), which
sends i2 to Sq1 i1. (There’s one of these maps for each element of F (1)2.) On the J(n), of course, these are
acting on the dual vector spaces, so we could write Sq1 : (Sq1 i1)∗ 7→ (i2)∗. Thus, for instance, we also have
Sq1 : (Sq2 Sq1 i1)∗ 7→ (Sq2 i2)∗. Once the Adem relations enter the picture, things get more complicated.
It’d be nice to have a better way of doing this.
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Remark 1. If M and N are unstable modules, so is M ⊗N with the diagonal action

Sqi(x⊗ y) =
∑

j+k=i

Sqj(x)⊗ Sqk(y).

Using this tensor product,
H̃∗(X ⊗ Y ) ∼= H̃∗(X ∧ Y )

as unstable modules.

There are then maps
F (n)→ F (j)⊗ F (k), j + k = n,

with in 7→ ij ⊗ ik. Dually, we get maps F (j)∗⊗F (k)∗ → F (j+ k)∗ which are associative, commutative, and
unital with unit (i0)∗ ∈ F (0)∗. Thus we get a bigraded commutative Fp-algebra

J(∗)• = F (•)∗.

(Confusing point: ∗ is being used both to mean ‘dual’ and as one of the two gradings.)

Let ξj ∈ (F (1)2j

)∗ be dual to Sq2j−1

· · · Sq2 Sq1(i1), for j ≥ 0.

Theorem 2 (Milnor, Miller). The resulting map

F2[ξ0, ξ1, . . . ]
∼=→ F (•)∗

is an isomorphism. The A-action on the • variable is given by

Sq1 ξi = ξ2
i−1

if i ≥ 1. (Since these modules are unstable, this describes the action completely.)

Here’s a partial diagram of the first few J(n). We’ll pay less attention to the odd ones, for reasons that
will become clear.
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At this point, it’s a little clearer to just do the cell diagrams. Here they are for the first few.
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J(2) J(3) J(4) J(6) J(8)

Remark 3. Milnor noticed that J(8) can’t be the cohomology of any space: the class ξ8
0 would have to be an

eighth power of something, which it can’t be. It is a retract of a space, though, and a piece of it is isomorphic
to the cohomology of RP 8.

Remark 4. By construction, A = limn Σ−nF (n), so

A∗ ∼= colimn Σ−nF (n)∗ ∼= F2[ξ0, ξ1, . . . ]/(ξ0 = 1) ∼= F2[ξ1, ξ2, . . . ],

a more familiar statement of Milnor’s result.

Sketch proof of the Milnor-Miller theorem. Let J = (j1, . . . , js) be admissible with e(J) ≤ n. Define f(J) =
(j1 − 2j2, j2 − 2j3, . . . , js) – since J is admissible, these are all positive numbers. Consider the map

SqJ(in)↔ ξ
n−e(J)
0 ξj1−2j2

1 · · · ξjss =: ξ
n−e(J)
0 ξf(J).

We claim that this is a one-to-one correspondence between the standard basis for F2[ξ0, ξ1, . . . ] and the basis
of F (•)∗ given by the duals of the admissible sequences. So these have the same rank, and thus the map is
an isomorphism.

We just have to check that the above map is actually one-to-one. We just check that

〈ξn−e(J)
0 ξf(J),Sqk(in)〉 =

{
1 J = K

0 J > K in the lexicographic ordering.

This is a hard calculation, so we won’t actually do it.

Observation 5. 1. It looks like J(2n+ 1) ∼= ΣJ(2n) by multiplying by ξ0.

2. It also looks like ξ0 : ΣJ(2n− 1)→ J(2n) is an injection with cokernel isomorphic to J(n). See below.
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• •

• •

• •

• •

ΣJ(3) // J(4) // J(2)

Let’s turn this observation into a theorem: you can read it off the algebra, but there’s a more conceptual
reason. There’s a suspension functor Σ : U → U sending M 7→ ΣM with (ΣM)n+1 = Mn. It has a left
adjoint, which we might as well call ‘loops’, with

HomU (ΩM,N) ∼= HomU (M,ΣN).

(It’s on the wrong side since we started with cohomology of spaces.) We could define ΩM by shifting
everything down by 1, but this might not be an unstable module any longer. Instead, we have to define

(ΩM)n = Mn+1/{Sq|x|(x)},

after checking, of course, that the thing under the slash is an A-submodule of M . In particular, the thing
under the slash is in even degrees, so that (ΩM)n = Mn+1 if n+ 1 is odd.

Example 6.
•

•

• � Ω // •

•

•
The classes in degrees 4 and 2 are top-dimensional squares, so they die under Ω; the classes in degrees 3 and
1 survive one degree lower.

Proposition 7. ΣJ(2n) = J(2n+ 1).

Proof.

HomU (M,ΣJ(2n)) = HomU (ΩM,J(2n)) = ((ΩM)2n)∗ (1)

= (M2n+1)∗ = HomU (M,J(2n+ 1)) (2)

By Yoneda’s lemma, ΣJ(2n) = J(2n+ 1).
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