Lecture 5: The doubling functor

October 8, 2014

The goal of the next two classes is to show that $\widetilde{H}^{*} \mathbb{R} P^{\infty}\left(\right.$ or $\widetilde{H}^{*} B \mathbb{Z} / p$, for $\left.p>2\right)$ is injective in \mathcal{U}. This is a key part of the proof of the Sullivan conjecture.
Remark 1. We already have canonical injectives $J(n)$, so there's an inclusion $\widetilde{H}^{*} \mathbb{R} P^{\infty} \hookrightarrow \prod J\left(n_{\alpha}\right)$, but there's something a little weird about products (unclear - maybe that we want a map $\bigoplus J\left(n_{\alpha}\right) \rightarrow \widetilde{H}^{*} \mathbb{R} P^{\infty}$ splitting this, and can't find one, or maybe that there's just no obvious splitting of the given map). So we need to build more injectives.

Recall that $J(*)^{\bullet}=F(\bullet)^{*} \cong \mathbb{F}_{2}\left[\xi_{0}, \xi_{1}, \ldots\right]$ with $\xi_{i} \in J\left(2^{i}\right)^{1}$. Define the weight of ξ_{i} to equal 2^{i} and the weight of a monomial $\xi_{0}^{i_{0}} \cdots \xi_{n}^{i_{n}}=i_{0} 2^{0}+\cdots+i_{n} 2^{n}$ (so weight is the $*$ grading). Then $J(n)$ is spanned by monomials of weight n.
Example 2. $J(4)$ is generated by $\xi_{2}, \xi_{1}^{2}, \xi_{0}^{2} \xi_{1}$, and ξ_{0}^{4}.
Observation 3. If $n=a_{0}+2 a_{1}+\cdots+2^{k} a_{k}$, where $a_{i}=0$ or 1 (so this is the base 2 expansion of n), then the element of lowest degree in $J(n)$ is exactly $\xi_{0}^{a_{0}} \xi_{1}^{a_{1}} \cdots \xi_{n}^{a_{n}}$. In $J(4)$, the element of lowest degree is $\xi_{2} \in J(4)^{1}$.

In particular, $J\left(2^{k}-1\right)^{s}=0$ if $s<k$, because $2^{k}-1=1+\cdots+2^{k-1}$, and the corresponding monomial $\xi_{0} \xi_{1} \cdots \xi_{k-1}$ has degree k.

At odd primes,

$$
J(*)^{\bullet} \cong \mathbb{F}_{p}\left[\tau_{-1}, \xi_{0}, \xi_{1}, \ldots\right] \otimes \Lambda\left(\tau_{0}, \tau_{1}, \ldots\right) /\left(\tau_{-1}^{2}=\xi_{0}\right)
$$

(the right-hand factor is an exterior algebra on the given generators), where

$$
\tau_{i} \in\left(F(1)^{2 p^{i}}\right)^{*} \text { for } i \geq 0, \quad \tau_{-1} \in\left(F(1)^{1}\right)^{*}, \quad \xi_{i} \in\left(F(2)^{2 p^{i}}\right)^{*}
$$

The Steenrod algebra action can be deduced from $\beta \tau_{i}=\xi_{i}, \mathcal{P}^{1} \xi_{i}=\xi_{i-1}^{p}$.
Let's go back to $p=2$.
Proposition 4. $\Sigma J(2 n-1) \cong J(2 n)$, and $\Sigma J(2 n)=\operatorname{ker}\left(\mathrm{Sq}^{n}: J(2 n) \rightarrow J(n)\right)$.
This map $\cdot \mathrm{Sq}^{n}: J(2 n) \rightarrow J(n)$ corresponds, by the Yoneda lemma, to the natural transformation

$$
\left(\mathrm{Sq}^{n}\right)^{*}: \operatorname{Hom}(M, J(2 n)) \cong\left(M^{2 n}\right)^{*} \rightarrow\left(M^{n}\right)^{*} \cong \operatorname{Hom}(M, J(n))
$$

Define $\Phi: \mathcal{U} \rightarrow \mathcal{U}$ to be the 'doubling functor' - 'if you put in the cohomology of $\mathbb{R} P^{\infty}$, you get out the cohomology of $\mathbb{C} P^{\infty}$.' Explicitly,

$$
\Phi^{n}(M)^{2 n}=M^{n}, \quad \Phi^{n}(M)^{2 n+1}=0
$$

as an \mathbb{F}_{2}-vector space. If $x \in M^{n}$, then write $\phi(x)$ for the corresponding element in $\Phi(M)^{2 n}$. We define the Steenrod operations by

$$
\mathrm{Sq}^{2 i} \phi(x)=\phi\left(\mathrm{Sq}^{i} x\right), \quad \mathrm{Sq}^{2 i+1} \phi(x)=0
$$

Exercise 5. Show that $\Phi(M)$ is actually a module over \mathcal{A}.
There's a map $\lambda=\lambda_{M}: \Phi^{n}(M) \rightarrow M$ given by $\phi(x) \mapsto \mathrm{Sq}^{|x|} x$.
Example 6. One easily observes that $\Phi\left(\widetilde{H}^{*}\left(\mathbb{R} P^{4}\right)\right)=\widetilde{H}^{*}\left(\mathbb{C} P^{4}\right)$. The map $\lambda: \widetilde{H}^{*}\left(\mathbb{C} P^{4}\right) \cong \mathbb{F}_{2}\left[x_{2}\right] /\left(x^{5}\right) \rightarrow$ $\widetilde{H}^{*}\left(\mathbb{R} P^{4}\right) \cong \mathbb{F}_{2}\left[y_{1}\right] /\left(y^{5}\right)$ sends $x \mapsto y^{2}$ (and thus $\left.x^{2} \mapsto y^{4}=\mathrm{Sq}^{2}(y)\right)$. (CELL DIAGRAM)

Exercise 7. Show that λ_{M} is an \mathcal{A}-module map.
Note that the cokernel of λ_{M} is $M /\left\{\mathrm{Sq}^{|x|}(x)\right\}=\Sigma \Omega M$. But what's the kernel?
Remark 8. The functor $M \mapsto \Omega M$ is defined by a quotient, so it's right exact. This means that a short exact sequence

$$
0 \rightarrow M_{0} \rightarrow M_{1} \rightarrow M_{2} \rightarrow 0
$$

is sent to an exact sequence

$$
\Omega M_{0} \rightarrow \Omega M_{1} \rightarrow \Omega M_{2} \rightarrow 0
$$

By extending this leftwards to a long exact sequence, one gets the left derived functors of Ω, which for historical reasons are written $\Omega_{s} M$ for $s \geq 0$ (with $\Omega_{0}=\Omega$).

The kernel of λ_{M} is going to be $\Sigma \Omega_{1} M$.
Proposition 9. Let $F: \mathcal{U} \rightarrow \mathbb{F}_{p}$-VectorSpaces be a right exact functor, and suppose we have a functor

$$
C_{\bullet}: \mathcal{U} \rightarrow \mathrm{Ch}_{*}\left(\mathbb{F}_{p}\right)
$$

(the target is the category of chain complexes) such that

1. there is a natural isomorphism $H_{0} C_{\bullet}(M) \cong F(M)$,
2. C. is exact,
3. and $H_{s} C \bullet(P)=0$ for P projective, $s>0$.

Then $H_{s} C$ • is naturally isomorphic to the sth left derived functor $L_{s} F$ of F.
Example 10. In our case, we put

$$
C_{\bullet}(M)=\cdots \rightarrow 0 \rightarrow \Phi(M) \xrightarrow{\lambda_{M}} M
$$

Then $H_{0} C_{\bullet}(M)=\Sigma \Omega M$, as we've seen, and $C \bullet$ is exact since we can check this on the underlying graded vector spaces. Finally, if P is projective, then $\lambda_{P}: \Phi(P) \rightarrow P$ is injective: indeed, we only need to check this for $F(n), n \geq 0$, in which

$$
\phi\left(\mathrm{Sq}^{j_{1}} \cdots \mathrm{Sq}^{j_{s}}\left(i_{n}\right)\right)=\mathrm{Sq}^{j_{1}+\cdots+j_{s}+n} \mathrm{Sq}^{j_{1}} \cdots \mathrm{Sq}^{j_{s}}\left(i_{n}\right)
$$

If $\left(j_{1}, \ldots, j_{s}\right)$ is admissible and has excess $\leq n$, then $\left(j_{1}+\cdots+j_{s}+n, j_{1}, \ldots, j_{s}\right)$ has excess exactly n and is admissible, proving the claim.

Thus, $H_{1} C_{\bullet}(M)=\operatorname{ker}(\Phi(M) \rightarrow M)=\Sigma \Omega_{1} M$, and $\Omega_{s} M=0$ for $s>1$.
Here's a sketch of the proof of Proposition 9. You need to construct a map $H_{s} C_{\bullet}(M) \rightarrow L_{s} F(M)$. Suppose given an exact sequence

$$
0 \rightarrow K \rightarrow P \rightarrow M \rightarrow 0
$$

with P projective. Then

$$
0 \rightarrow C \bullet K \rightarrow C \bullet P \rightarrow C \bullet M \rightarrow 0
$$

is exact, and $H_{s} C_{\bullet}(P)=0$ for $s>0$. Thus, $H_{s+1} C_{\bullet}(M) \cong H_{s} C_{\bullet}(K)$ for $s \geq 1$. The map we want, on H_{1}, is constructed via the diagram

in fact, all the solid vertical maps are isomorphisms, so this forces the map on H_{1} to be an isomorphism. By induction, we get isomorphisms for all s.

Proof of Proposition 4. We've done the even part of this already. Now let's show that

$$
0 \rightarrow \Sigma J(2 n-1) \rightarrow J(2 n) \xrightarrow{\cdot \mathrm{Sq}^{n}} J(n) \rightarrow 0
$$

is exact. It suffices to show that this is exact after applying $\operatorname{Hom}_{\mathcal{U}}(F(k), \cdots)$ for all k. This gives

But $\left(\Omega F(k)^{2 n-1}\right)^{*} \cong\left(\Sigma \Omega F(k)^{2 n}\right)^{*}$ since this is in odd degrees, and $\left(F(k)^{n}\right)^{*} \cong\left(\Phi F(k)^{2 n}\right)^{*}$, as we've checked. So this is the dual of the exact sequence

$$
0 \rightarrow \Phi F(k) \xrightarrow{\lambda} F(k) \rightarrow \Sigma \Omega F(k) \rightarrow 0 .
$$

Note that $\Omega F(k) \cong F(k-1)$ by Yoneda:

$$
\operatorname{Hom}_{\mathcal{U}}(\Omega F(k), M) \cong \operatorname{Hom}(F(k), \Sigma M) \cong(\Sigma M)^{k} \cong M^{k-1} \cong \operatorname{Hom}_{\mathcal{U}}(F(k-1), M)
$$

Definition 11. $M \in \mathcal{U}$ is reduced if $\lambda: \Phi M \rightarrow M$ is injective.
For example, $F(k)$ and $\widetilde{H}^{*}\left(\mathbb{R} P^{\infty}\right)$ are reduced. If $x^{i} \in H^{i} \mathbb{R} P^{\infty}$, then $\mathrm{Sq}^{i} x^{i}=x^{2 i} \neq 0$.

Definition 12. Let $K(1)=\lim (\cdots \rightarrow J(8) \rightarrow J(4) \rightarrow J(2))$ where the map $J\left(2^{k+1}\right) \rightarrow J\left(2^{k}\right)$ is $\cdot \mathrm{Sq}^{2^{k}}$.
Then the nonzero maps $\widetilde{H}^{*} \mathbb{R} P^{\infty} \rightarrow J\left(2^{k}\right)$ (there's just one of these for each k) assemble to a map $\widetilde{H}^{*} \mathbb{R} P^{\infty} \rightarrow K(1)$.

Theorem 13 (Carlsson). The module $K(1)$ is a reduced injective, and the map $\widetilde{H}^{*} \mathbb{R} P^{\infty} \rightarrow K(1)$ is a split inclusion.

Corollary 14. $\widetilde{H}^{*} \mathbb{R} P^{\infty} \in \mathcal{U}$ is injective.
Note that the finite $\widetilde{H}^{*} \mathbb{R} P^{n}$'s are not injective - for example, $\widetilde{H}^{*} \mathbb{R} P^{8}$ has a non-split inclusion into $J(8)$, as one can see from the above cell diagram.

