Lecture 5: The doubling functor

October 8, 2014

The goal of the next two classes is to show that $\widetilde{H}^* \mathbb{R}P^{\infty}$ (or $\widetilde{H}^* B\mathbb{Z}/p$, for p > 2) is injective in \mathcal{U} . This is a key part of the proof of the Sullivan conjecture.

Remark 1. We already have canonical injectives J(n), so there's an inclusion $\tilde{H}^*\mathbb{R}P^{\infty} \hookrightarrow \prod J(n_{\alpha})$, but there's something a little weird about products (unclear – maybe that we want a map $\bigoplus J(n_{\alpha}) \to \tilde{H}^*\mathbb{R}P^{\infty}$ splitting this, and can't find one, or maybe that there's just no obvious splitting of the given map). So we need to build more injectives.

Recall that $J(*)^{\bullet} = F(\bullet)^* \cong \mathbb{F}_2[\xi_0, \xi_1, \dots]$ with $\xi_i \in J(2^i)^1$. Define the **weight** of ξ_i to equal 2^i and the weight of a monomial $\xi_0^{i_0} \cdots \xi_n^{i_n} = i_0 2^0 + \cdots + i_n 2^n$ (so weight is the * grading). Then J(n) is spanned by monomials of weight n.

Example 2. J(4) is generated by $\xi_2, \xi_1^2, \xi_0^2 \xi_1$, and ξ_0^4 .

Observation 3. If $n = a_0 + 2a_1 + \dots + 2^k a_k$, where $a_i = 0$ or 1 (so this is the base 2 expansion of n), then the element of lowest degree in J(n) is exactly $\xi_0^{a_0} \xi_1^{a_1} \cdots \xi_n^{a_n}$. In J(4), the element of lowest degree is $\xi_2 \in J(4)^1$. In particular, $J(2^k - 1)^s = 0$ if s < k, because $2^k - 1 = 1 + \dots + 2^{k-1}$, and the corresponding monomial

In particular, $J(2^{\kappa}-1)^s = 0$ if s < k, because $2^{\kappa}-1 = 1 + \cdots + 2^{\kappa-1}$, and the corresponding monomial $\xi_0\xi_1\cdots\xi_{k-1}$ has degree k.

At odd primes,

$$J(*)^{\bullet} \cong \mathbb{F}_p[\tau_{-1},\xi_0,\xi_1,\dots] \otimes \Lambda(\tau_0,\tau_1,\dots)/(\tau_{-1}^2=\xi_0)$$

(the right-hand factor is an exterior algebra on the given generators), where

$$\tau_i \in (F(1)^{2p^i})^*$$
 for $i \ge 0$, $\tau_{-1} \in (F(1)^1)^*$, $\xi_i \in (F(2)^{2p^i})^*$.

The Steenrod algebra action can be deduced from $\beta \tau_i = \xi_i$, $\mathcal{P}^1 \xi_i = \xi_{i-1}^p$.

Let's go back to p = 2.

Proposition 4. $\Sigma J(2n-1) \cong J(2n)$, and $\Sigma J(2n) = \ker(\operatorname{Sq}^n : J(2n) \to J(n))$.

This map \cdot Sqⁿ : $J(2n) \to J(n)$ corresponds, by the Yoneda lemma, to the natural transformation

$$(\operatorname{Sq}^n)^* : \operatorname{Hom}(M, J(2n)) \cong (M^{2n})^* \to (M^n)^* \cong \operatorname{Hom}(M, J(n)).$$

Define $\Phi: \mathcal{U} \to \mathcal{U}$ to be the 'doubling functor' – 'if you put in the cohomology of $\mathbb{R}P^{\infty}$, you get out the cohomology of $\mathbb{C}P^{\infty}$.' Explicitly,

$$\Phi^n(M)^{2n} = M^n, \qquad \Phi^n(M)^{2n+1} = 0$$

as an \mathbb{F}_2 -vector space. If $x \in M^n$, then write $\phi(x)$ for the corresponding element in $\Phi(M)^{2n}$. We define the Steenrod operations by

$$\operatorname{Sq}^{2i} \phi(x) = \phi(\operatorname{Sq}^{i} x), \qquad \operatorname{Sq}^{2i+1} \phi(x) = 0.$$

Exercise 5. Show that $\Phi(M)$ is actually a module over \mathcal{A} .

There's a map $\lambda = \lambda_M : \Phi^n(M) \to M$ given by $\phi(x) \mapsto \operatorname{Sq}^{|x|} x$.

Example 6. One easily observes that $\Phi(\widetilde{H}^*(\mathbb{R}P^4)) = \widetilde{H}^*(\mathbb{C}P^4)$. The map $\lambda : \widetilde{H}^*(\mathbb{C}P^4) \cong \mathbb{F}_2[x_2]/(x^5) \to \widetilde{H}^*(\mathbb{R}P^4) \cong \mathbb{F}_2[y_1]/(y^5)$ sends $x \mapsto y^2$ (and thus $x^2 \mapsto y^4 = \operatorname{Sq}^2(y)$). (CELL DIAGRAM)

Exercise 7. Show that λ_M is an \mathcal{A} -module map.

Note that the cokernel of λ_M is $M/{Sq^{|x|}(x)} = \Sigma \Omega M$. But what's the kernel?

Remark 8. The functor $M \mapsto \Omega M$ is defined by a quotient, so it's right exact. This means that a short exact sequence

$$0 \to M_0 \to M_1 \to M_2 \to 0$$

is sent to an exact sequence

$$\Omega M_0 \to \Omega M_1 \to \Omega M_2 \to 0.$$

By extending this leftwards to a long exact sequence, one gets the **left derived functors** of Ω , which for historical reasons are written $\Omega_s M$ for $s \ge 0$ (with $\Omega_0 = \Omega$).

The kernel of λ_M is going to be $\Sigma \Omega_1 M$.

Proposition 9. Let $F: \mathcal{U} \to \mathbb{F}_p$ -VectorSpaces be a right exact functor, and suppose we have a functor

$$C_{\bullet}: \mathcal{U} \to \mathsf{Ch}_*(\mathbb{F}_p)$$

(the target is the category of chain complexes) such that

- 1. there is a natural isomorphism $H_0C_{\bullet}(M) \cong F(M)$,
- 2. C_{\bullet} is exact,
- 3. and $H_sC_{\bullet}(P) = 0$ for P projective, s > 0.

Then H_sC_{\bullet} is naturally isomorphic to the sth left derived functor L_sF of F.

Example 10. In our case, we put

$$C_{\bullet}(M) = \cdots \to 0 \to \Phi(M) \stackrel{\lambda_M}{\to} M$$

Then $H_0C_{\bullet}(M) = \Sigma\Omega M$, as we've seen, and C_{\bullet} is exact since we can check this on the underlying graded vector spaces. Finally, if P is projective, then $\lambda_P : \Phi(P) \to P$ is injective: indeed, we only need to check this for $F(n), n \ge 0$, in which

$$\phi(\operatorname{Sq}^{j_1}\cdots\operatorname{Sq}^{j_s}(i_n)) = \operatorname{Sq}^{j_1+\cdots+j_s+n} \operatorname{Sq}^{j_1}\cdots\operatorname{Sq}^{j_s}(i_n)$$

If (j_1, \ldots, j_s) is admissible and has excess $\leq n$, then $(j_1 + \cdots + j_s + n, j_1, \ldots, j_s)$ has excess exactly n and is admissible, proving the claim.

Thus, $H_1C_{\bullet}(M) = \ker(\Phi(M) \to M) = \Sigma\Omega_1M$, and $\Omega_s M = 0$ for s > 1.

Here's a sketch of the proof of Proposition 9. You need to construct a map $H_sC_{\bullet}(M) \to L_sF(M)$. Suppose given an exact sequence

$$0 \to K \to P \to M \to 0$$

with P projective. Then

$$0 \to C_{\bullet}K \to C_{\bullet}P \to C_{\bullet}M \to 0$$

is exact, and $H_sC_{\bullet}(P) = 0$ for s > 0. Thus, $H_{s+1}C_{\bullet}(M) \cong H_sC_{\bullet}(K)$ for $s \ge 1$. The map we want, on H_1 , is constructed via the diagram

in fact, all the solid vertical maps are isomorphisms, so this forces the map on H_1 to be an isomorphism. By induction, we get isomorphisms for all s.

Proof of Proposition 4. We've done the even part of this already. Now let's show that

$$0 \to \Sigma J(2n-1) \to J(2n) \stackrel{\cdot \operatorname{Sq}^n}{\to} J(n) \to 0$$

is exact. It suffices to show that this is exact after applying $\operatorname{Hom}_{\mathcal{U}}(F(k),\cdots)$ for all k. This gives

But $(\Omega F(k)^{2n-1})^* \cong (\Sigma \Omega F(k)^{2n})^*$ since this is in odd degrees, and $(F(k)^n)^* \cong (\Phi F(k)^{2n})^*$, as we've checked. So this is the dual of the exact sequence

$$0 \to \Phi F(k) \stackrel{\lambda}{\to} F(k) \to \Sigma \Omega F(k) \to 0.$$

Note that $\Omega F(k) \cong F(k-1)$ by Yoneda:

$$\operatorname{Hom}_{\mathcal{U}}(\Omega F(k), M) \cong \operatorname{Hom}(F(k), \Sigma M) \cong (\Sigma M)^k \cong M^{k-1} \cong \operatorname{Hom}_{\mathcal{U}}(F(k-1), M).$$

Definition 11. $M \in \mathcal{U}$ is reduced if $\lambda : \Phi M \to M$ is injective.

For example, F(k) and $\widetilde{H}^*(\mathbb{R}P^\infty)$ are reduced. If $x^i \in H^i \mathbb{R}P^\infty$, then $\operatorname{Sq}^i x^i = x^{2i} \neq 0$.

Definition 12. Let $K(1) = \lim(\dots \to J(8) \to J(4) \to J(2))$ where the map $J(2^{k+1}) \to J(2^k)$ is $\cdot \operatorname{Sq}^{2^k}$.

Then the nonzero maps $\widetilde{H}^* \mathbb{R} P^{\infty} \to J(2^k)$ (there's just one of these for each k) assemble to a map $\widetilde{H}^* \mathbb{R} P^{\infty} \to K(1)$.

Theorem 13 (Carlsson). The module K(1) is a reduced injective, and the map $\widetilde{H}^* \mathbb{R}P^{\infty} \to K(1)$ is a split inclusion.

Corollary 14. $\widetilde{H}^* \mathbb{R} P^\infty \in \mathcal{U}$ is injective.

Note that the finite $\widetilde{H}^* \mathbb{R} P^n$'s are not injective – for example, $\widetilde{H}^* \mathbb{R} P^8$ has a non-split inclusion into J(8), as one can see from the above cell diagram.