Lecture 5: The doubling functor

October 8, 2014

The goal of the next two classes is to show that H*RP> (or fl*BZ/p, for p > 2) is injective in Y. This
is a key part of the proof of the Sullivan conjecture.

Remark 1. We already have canonical injectives J(n), so there’s an inclusion H*RP> < [17(na), but
there’s something a little weird about products (unclear — maybe that we want a map €@ J(n,) — H*RP>
splitting this, and can’t find one, or maybe that there’s just no obvious splitting of the given map). So we
need to build more injectives.

Recall that J(x)® = F(e)* = Fy[&y,&,...] with & € J(2°)'. Define the weight of & to equal 2 and the
weight of a monomial £ -+ - &in = g2 + -+ 4+ i,2" (so weight is the * grading). Then J(n) is spanned by
monomials of weight n.

Ezample 2. J(4) is generated by &, &7, €3£, and &;.

Observation 3. If n = ag+2a1 + - - - +2%ay,, where a; = 0 or 1 (so this is the base 2 expansion of n), then the
element of lowest degree in J(n) is exactly £5°&y* - - £2n. In J(4), the element of lowest degree is & € J(4)1.

In particular, J(2¥ —1)* = 0 if s < k, because 2¥ — 1 =1+ --- 4 2*~! and the corresponding monomial
&o&1 -+ &1 has degree k.

At odd primes,
J(%)* 2 Fplr_1,&0,&1, ... | @ Aro, 71, ) /(721 = &)

(the right-hand factor is an exterior algebra on the given generators), where
T € (F(l)Qp'i>* for i > 0, 71 € (F(1)YH*, & € (F(2>2p">*.

The Steenrod algebra action can be deduced from fr; = &, P1 & = P
Let’s go back to p = 2.

Proposition 4. £J(2n — 1) = J(2n), and £J(2n) = ker(Sq" : J(2n) — J(n)).
This map - Sq" : J(2n) — J(n) corresponds, by the Yoneda lemma, to the natural transformation
(Sq™)* : Hom(M, J(2n)) = (M?™)* — (M™)* = Hom(M, J(n)).

Define ® : U/ — U to be the ‘doubling functor’ — ‘if you put in the cohomology of RP*°, you get out the
cohomology of CP>.” Explicitly,

(I)n(M)Qn _ Mn’ (I)n(M>2n+1 =0

as an Fa-vector space. If # € M™, then write ¢(z) for the corresponding element in ®(M)?". We define the
Steenrod operations by

Sa* ¢(z) = ¢(Sa'x),  Sq*F¢(x) = 0.
Ezercise 5. Show that ®(M) is actually a module over A.
There’s a map A = Ay : ®"(M) — M given by ¢(x) — Sq/®! z.

Ezample 6. One easily observes that ®(H*(RP*)) = H*(CP*). The map A : H*(CP*) = Fy[x,]/(z°) —
H*(RP*) 2= Fy[y1]/(y°) sends 2 — y? (and thus 22 — y* = Sq*(y)). (CELL DIAGRAM)



Ezxercise 7. Show that A; is an A-module map.
Note that the cokernel of Ay is M/{Sq!"!(z)} = ZQM. But what’s the kernel?

Remark 8. The functor M — QM is defined by a quotient, so it’s right exact. This means that a short exact
sequence
00— My— My — My —0

is sent to an exact sequence
QMO — QMl — QMQ — 0.

By extending this leftwards to a long exact sequence, one gets the left derived functors of 2, which for
historical reasons are written Q,M for s > 0 (with Qy = Q).

The kernel of Ay is going to be X M.
Proposition 9. Let F': U — F,—VectorSpaces be a right exact functor, and suppose we have a functor
Co : U — Chy(F)p)
(the target is the category of chain complexes) such that
1. there is a natural isomorphism HoCe(M) =2 F(M),
2. C4 is exact,
3. and H;Co(P) =0 for P projective, s > 0.
Then H,Cy is naturally isomorphic to the sth left derived functor LsF of F.

Ezample 10. In our case, we put
Co(M) =+ —0— ®M) Y M.

Then HoCo(M) = XQM, as we've seen, and C, is exact since we can check this on the underlying graded
vector spaces. Finally, if P is projective, then Ap : ®(P) — P is injective: indeed, we only need to check
this for F(n), n > 0, in which

¢(qu1 . qus (ln)) — qu1+"'+js+7l qul . qus (Zn)

If (j1,...,Js) is admissible and has excess < n, then (j1 + -+ + js + n,j1,...,Js) has excess exactly n and
is admissible, proving the claim.
Thus, H1Ce(M) = ker(®(M) — M) =X M, and Q;M =0 for s > 1.

Here’s a sketch of the proof of Proposition [0} You need to construct a map H,Co(M) — L F(M).
Suppose given an exact sequence
0—+K—+P—M-—20

with P projective. Then
0= CeK = CoP — CeM — 0

is exact, and H;Co(P) = 0 for s > 0. Thus, Hs11Ce(M) = H,Co(K) for s > 1. The map we want, on H,
is constructed via the diagram

0—— H1Ce(M) —— HyCo(K) —— HoCo(P) —— HyCo(M) ——10

v | | |

0— L F(M) F(K) F(P) F(M) 0.

in fact, all the solid vertical maps are isomorphisms, so this forces the map on H; to be an isomorphism. By
induction, we get isomorphisms for all s.



Proof of Proposition[]] We’ve done the even part of this already. Now let’s show that
0= 2J2n—1) = J2n) 2 Jn) =0

is exact. It suffices to show that this is exact after applying Homy(F(k),---) for all k. This gives

n

0 —— Hom(F'(k),XJ(2n — 1)) —— Hom(F'(k), J(2n)) S Hom(F(k),J(n)) —0

l T,

0—— (QF (k)" ) ————— (F(k)*") —————— (F(h)") ——0.

IR
IR

But (QF (k)?"~1)* = (SQF (k)?")* since this is in odd degrees, and (F(k)")* = (®F(k)*")*, as we've checked.
So this is the dual of the exact sequence

0— ®F(k) D F(k) — SQF (k) — 0.

Note that QF (k) = F(k — 1) by Yoneda:
Homy (QF (k), M) = Hom(F(k), M) = (SM)* = M*~! =~ Homy, (F(k — 1), M).
Definition 11. M € U is reduced if \ : DM — M is injective.
For example, F(k) and H* (RP>) are reduced. If z* € H'RP>, then Sq' z* = z%* # 0.
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Definition 12. Let K(1) = lim(--- — J(8) — J(4) — J(2)) where the map J(28*1) — J(2F) is 'quk.
Then the nonzero maps H*RP> — J(2F) (there’s just one of these for each k) assemble to a map

H*RP> — K(1).

Theorem 13 (Carlsson). The module K(1) is a reduced injective, and the map H*RP> — K(1) is a split

mnclusion.



Corollary 14. H*RP> €U is 1mjective.

Note that the finite H*RP™’s are not injective — for example, H*RPS8 has a non-split inclusion into J(8),
as one can see from the above cell diagram.



