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The goal of the next two classes is to show that H̃∗RP∞ (or H̃∗BZ/p, for p > 2) is injective in U . This
is a key part of the proof of the Sullivan conjecture.

Remark 1. We already have canonical injectives J(n), so there’s an inclusion H̃∗RP∞ ↪→
∏
J(nα), but

there’s something a little weird about products (unclear – maybe that we want a map
⊕
J(nα)→ H̃∗RP∞

splitting this, and can’t find one, or maybe that there’s just no obvious splitting of the given map). So we
need to build more injectives.

Recall that J(∗)• = F (•)∗ ∼= F2[ξ0, ξ1, . . . ] with ξi ∈ J(2i)1. Define the weight of ξi to equal 2i and the
weight of a monomial ξi00 · · · ξinn = i020 + · · · + in2n (so weight is the ∗ grading). Then J(n) is spanned by
monomials of weight n.

Example 2. J(4) is generated by ξ2, ξ21 , ξ20ξ1, and ξ40 .

Observation 3. If n = a0 + 2a1 + · · ·+ 2kak, where ai = 0 or 1 (so this is the base 2 expansion of n), then the
element of lowest degree in J(n) is exactly ξa00 ξa11 · · · ξann . In J(4), the element of lowest degree is ξ2 ∈ J(4)1.

In particular, J(2k − 1)s = 0 if s < k, because 2k − 1 = 1 + · · ·+ 2k−1, and the corresponding monomial
ξ0ξ1 · · · ξk−1 has degree k.

At odd primes,
J(∗)• ∼= Fp[τ−1, ξ0, ξ1, . . . ]⊗ Λ(τ0, τ1, . . . )/(τ

2
−1 = ξ0)

(the right-hand factor is an exterior algebra on the given generators), where

τi ∈ (F (1)2p
i

)∗ for i ≥ 0, τ−1 ∈ (F (1)1)∗, ξi ∈ (F (2)2p
i

)∗.

The Steenrod algebra action can be deduced from βτi = ξi, P1 ξi = ξpi−1.
Let’s go back to p = 2.

Proposition 4. ΣJ(2n− 1) ∼= J(2n), and ΣJ(2n) = ker(Sqn : J(2n)→ J(n)).

This map ·Sqn : J(2n)→ J(n) corresponds, by the Yoneda lemma, to the natural transformation

(Sqn)∗ : Hom(M,J(2n)) ∼= (M2n)∗ → (Mn)∗ ∼= Hom(M,J(n)).

Define Φ : U → U to be the ‘doubling functor’ – ‘if you put in the cohomology of RP∞, you get out the
cohomology of CP∞.’ Explicitly,

Φn(M)2n = Mn, Φn(M)2n+1 = 0

as an F2-vector space. If x ∈Mn, then write φ(x) for the corresponding element in Φ(M)2n. We define the
Steenrod operations by

Sq2i φ(x) = φ(Sqi x), Sq2i+1 φ(x) = 0.

Exercise 5. Show that Φ(M) is actually a module over A.

There’s a map λ = λM : Φn(M)→M given by φ(x) 7→ Sq|x| x.

Example 6. One easily observes that Φ(H̃∗(RP 4)) = H̃∗(CP 4). The map λ : H̃∗(CP 4) ∼= F2[x2]/(x5) →
H̃∗(RP 4) ∼= F2[y1]/(y5) sends x 7→ y2 (and thus x2 7→ y4 = Sq2(y)). (CELL DIAGRAM)
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Exercise 7. Show that λM is an A-module map.

Note that the cokernel of λM is M/{Sq|x|(x)} = ΣΩM . But what’s the kernel?

Remark 8. The functor M 7→ ΩM is defined by a quotient, so it’s right exact. This means that a short exact
sequence

0→M0 →M1 →M2 → 0

is sent to an exact sequence
ΩM0 → ΩM1 → ΩM2 → 0.

By extending this leftwards to a long exact sequence, one gets the left derived functors of Ω, which for
historical reasons are written ΩsM for s ≥ 0 (with Ω0 = Ω).

The kernel of λM is going to be ΣΩ1M .

Proposition 9. Let F : U → Fp−VectorSpaces be a right exact functor, and suppose we have a functor

C• : U → Ch∗(Fp)

(the target is the category of chain complexes) such that

1. there is a natural isomorphism H0C•(M) ∼= F (M),

2. C• is exact,

3. and HsC•(P ) = 0 for P projective, s > 0.

Then HsC• is naturally isomorphic to the sth left derived functor LsF of F .

Example 10. In our case, we put

C•(M) = · · · → 0→ Φ(M)
λM→ M.

Then H0C•(M) = ΣΩM , as we’ve seen, and C• is exact since we can check this on the underlying graded
vector spaces. Finally, if P is projective, then λP : Φ(P ) → P is injective: indeed, we only need to check
this for F (n), n ≥ 0, in which

φ(Sqj1 · · · Sqjs(in)) = Sqj1+···+js+n Sqj1 · · · Sqjs(in).

If (j1, . . . , js) is admissible and has excess ≤ n, then (j1 + · · · + js + n, j1, . . . , js) has excess exactly n and
is admissible, proving the claim.

Thus, H1C•(M) = ker(Φ(M)→M) = ΣΩ1M , and ΩsM = 0 for s > 1.

Here’s a sketch of the proof of Proposition 9. You need to construct a map HsC•(M) → LsF (M).
Suppose given an exact sequence

0→ K → P →M → 0

with P projective. Then
0→ C•K → C•P → C•M → 0

is exact, and HsC•(P ) = 0 for s > 0. Thus, Hs+1C•(M) ∼= HsC•(K) for s ≥ 1. The map we want, on H1,
is constructed via the diagram

0 // H1C•(M) //

��

H0C•(K) //

��

H0C•(P ) //

��

H0C•(M) //

��

0

0 // L1F (M) // F (K) // F (P ) // F (M) // 0.

in fact, all the solid vertical maps are isomorphisms, so this forces the map on H1 to be an isomorphism. By
induction, we get isomorphisms for all s.
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Proof of Proposition 4. We’ve done the even part of this already. Now let’s show that

0→ ΣJ(2n− 1)→ J(2n)
· Sqn

→ J(n)→ 0

is exact. It suffices to show that this is exact after applying HomU (F (k), · · · ) for all k. This gives

0 // Hom(F (k),ΣJ(2n− 1)) //

∼=
��

Hom(F (k), J(2n))
Sqn

//

∼=
��

Hom(F (k), J(n))

∼=
��

// 0

0 // (ΩF (k)2n−1)∗ // (F (k)2n)∗
λ∗

// (F (k)n)∗ // 0.

But (ΩF (k)2n−1)∗ ∼= (ΣΩF (k)2n)∗ since this is in odd degrees, and (F (k)n)∗ ∼= (ΦF (k)2n)∗, as we’ve checked.
So this is the dual of the exact sequence

0→ ΦF (k)
λ→ F (k)→ ΣΩF (k)→ 0.

Note that ΩF (k) ∼= F (k − 1) by Yoneda:

HomU (ΩF (k),M) ∼= Hom(F (k),ΣM) ∼= (ΣM)k ∼= Mk−1 ∼= HomU (F (k − 1),M).

Definition 11. M ∈ U is reduced if λ : ΦM →M is injective.

For example, F (k) and H̃∗(RP∞) are reduced. If xi ∈ HiRP∞, then Sqi xi = x2i 6= 0.

•

•

•

• •

• • •

• •

• • •

• • •

J(8)
· Sq4

// J(4)
· Sq2

// J(2)

Definition 12. Let K(1) = lim(· · · → J(8)→ J(4)→ J(2)) where the map J(2k+1)→ J(2k) is ·Sq2k .

Then the nonzero maps H̃∗RP∞ → J(2k) (there’s just one of these for each k) assemble to a map

H̃∗RP∞ → K(1).

Theorem 13 (Carlsson). The module K(1) is a reduced injective, and the map H̃∗RP∞ → K(1) is a split
inclusion.
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Corollary 14. H̃∗RP∞ ∈ U is injective.

Note that the finite H̃∗RPn’s are not injective – for example, H̃∗RP 8 has a non-split inclusion into J(8),
as one can see from the above cell diagram.
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