
Lecture 6: Carlsson’s theorem

October 10, 2014

Today, we’re going to prove and explore an amazing result: that H̃∗RP∞ (or H̃∗BZ/p, for p > 2) is an
injective object in U .

Remark 1. Don’t take notes on this, but what does ‘injective’ mean? It means that there are arrows filling
any diagram

0 // N //

��

M

zz
H̃∗RP∞.

If you think this is easy, you should try to do it. There’s just no method. What we need to do instead is to
split H̃∗RP∞ out of something more obviously injective.

Definition 2. Let

K(n) = lim{· · · → J(4n)
· Sq2n

→ J(2n)
· Sqn

→ J(n)},

where the maps fit into short exact sequences

0→ ΣJ(2n− 1)→ J(2n)
· Sqn

→ J(n)→ 0.

Of course, K(2n) ∼= K(n), but otherwise, these things are different.

For each j, there is a unique nonzero map in U , fj : H̃RP∞ → J(2j). The map Sq2j : H2jRP∞ →
H2j+1RP∞ makes the diagram

H̃∗RP∞
fj+1 //

fj %%

J(2j+1)

· Sq2j

��
J(2j)

commute. So we get a map H̃∗RP∞ → K(1).

Proposition 3. K(n) is injective.

Proof. For M ∈ U ,

HomU (M,K(n)) ∼= HomU (M, lim J(2jn))

∼= lim HomU (M,J(2jn))

∼= lim(M2jn)∗

∼= (colimM2jn)∗,

which is an exact functor.

Theorem 4 (Carlsson). H̃∗RP∞ → K(1) is split.
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Before we prove this, we need a construction and some notation. The map ·Sqn : J(2n)→ J(n) is given
as follows. J(n) ⊆ J(•)∗ ∼= F2[ξ0, ξ1, . . . ] is spanned by the monomials of weight n, where the weight of
ξi00 · · · ξinn is

wt(ξi00 · · · ξinn ) = i0 + 2i1 + 22i2 + · · ·+ 2nin.

We have

·Sqn(ξi00 · · · ξinn ) =

{
0 i0 6= 0

ξi10 ξ
i2
1 · · · ξinn1

i0 = 0.

For example,

ξ40

ξ1ξ
2
0

ξ21 // ξ20

ξ2 // ξ21

ΣJ(3) // J(4) // J(2)

Σ2J(2)

Thus, ·Sqn is the restriction of a ring map

V : F2[ξ0, ξ1, . . . ]→ F2[ξ0, ξ1, . . . ]

with V (ξi) = 0 for i = 0 and ξi−1 otherwise.
This map has the defect that it doesn’t preserve one of the gradings (recall |ξi| = (2i, 1)). In fact, V

halves the first degree, which is a fancy way of saying that it goes from J(2n) to J(n).
Let’s fix this! Define

J1/2n(•)∗ = F2[ξ−n, ξ−n+1, . . . , ξ0, ξ1, . . . ]

where |ξi| = (2i, 1). This is bigraded over N
[
1
2

]
× N. Define J1/2n(•)∗ → J1/2n−1(•)∗ to be the ring map

given by ξi 7→ ξi. In particular, ξ−n goes to 0. Then we can define

K(•)∗ = lim
n
J1/2n(•)∗ ∼= F2[. . . , ξ−1, ξ0, ξ1, . . . ].

This has a vertical unstable module structure with Sq1 ξi = ξ2i−1.
For example,

K(1)∗ = lim{· · · → J1/4(1)→ J1/2(1)→ J1(1)},

but each J1/2n(1) is isomorphic to J(2n) after changing the gradings, so we get our ordinary K(1)∗.

2



Example 5. In degree (1, ∗) in K(•)∗, we have the following elements:

...

ξ4−2

ξ2−2ξ−1

ξ2−1

ξ0

Proof of Carlsson’s theorem. Define g : K(•)∗ → H̃∗(RP∞) = F2[x] to be the unique algebra map with
g(ξi) = x for all i. This is a map of modules over the Steenrod algebra because g(Sq1 ξi) = g(ξ2i−1) = x2 =

Sq1(x) = Sq1 g(ξi). So it’s a map in U . We also have a map

f : H̃∗(RP∞)→ K(1)→ K(•)∗.

I claim that H1RP∞ f→ K(1)1
g→ H1RP∞ is the identity. We can see this through a diagram.

...

• •

• •

• •

• • •

• • •

• •

• •

RP∞ // J(8)

In the diagram, x 7→ ξ3 ∈ J(8) (the lowest cells), which becomes ξ0 in K(1)∗. We always have x 7→ ξ0 7→ x.
The theorem then follows from

Lemma 6. Any map in U from H̃∗RP∞ → H̃∗RP∞ which is nonzero in degree 1 is an isomorphism.
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Rather than proving this, let’s just draw a picture.

...
...

• // •

• // •

• // •

• // •

• // •

• // •

• // •

• // •

The map is an isomorphism in degree 1, and a map of Steenrod modules, hence the dashed arrows are also
isomorphisms by applying Steenrod operations; the dotted arrows are isomorphisms as well.

More formally, if f(x) = x, then

f(x2
s

) = f(Sq2s−1

Sq2s−2

· · · Sq1(x)) = Sq2s−1

Sq2s−2

· · · Sq1(f(x)) = x2
s

.

Then for 1 ≤ j ≤ 2s−1, write j = 2t1 + · · · + 2ti , with t1 > · · · > ti. Using that Sq2t1 · · · Sq2ti x2
s−j = x2

s

,
we get that f(x2

s−j) = x2
s−j as well. This completes the proof.

Remark 7. The point is that the Steenrod module diagram for H̃∗RP∞ is connected. In characteristic p > 0,
this is no longer true – in fact, we’ll have p− 1 summands, and we have to check that the bottom elements
of all of them are hit. Otherwise, the ideas of the proof are the same.

One version of the Sullivan conjecture is as follows. Let X be a finite pointed 1-connected CW-complex;
then for all t ≥ 0, [ΣtRP∞, X]∗ = ∗ (that is, pointed maps). The first algebraic approximation is the
Hurewicz map:

[ΣtRP∞, X]∗ → HomU (H̃∗X,ΣtH̃∗RP∞) ∼= HomU (ΩtH̃∗X, H̃∗RP∞).

Lemma 8. If M is finite, so is Ωt
nM , the n-fold derived t-fold loops functor of M .

Assuming this, for x ∈ HnX, then for some large s, Sq2sn · · · Sqn x = 0, by finiteness. If f : ΩtH̃∗X →
H̃∗RP∞ is any map, then Sq2sn · · · Sqn f(x) = f(Sq2sn · · · Sqn x) = 0, but the squares act injectively on

H̃∗RP∞, so f(x) = 0 as well. Thus, any map ΣtRP∞ → X is at least zero on cohomology.

We’ve seen that H̃∗RP∞ is injective, but ΣtH̃∗RP∞ is not. Nevertheless, next time we’ll prove the
following.

Proposition 9. If M is finite, then ExtsU (M,ΣtH̃∗RP∞) = 0 for all s, t ≥ 0.
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