
Lecture 7: Injectives and adjunctions

October 13, 2014

One version of the Sullivan conjecture, which we’ll greatly generalize, is that if X is a finite CW-complex,
then the space of pointed maps map∗(BZ/p,X) is contractible. That is,

[ΣtBZ/p,X]∗ = 0

for all t.
As an algebraic warm-up, we can treat this in cohomology instead of homotopy.

Definition 1. M ∈ U is locally finite if for all x ∈M , the submodule Ax ⊆M is a finite set.

(This includes things like infinite sums and products of finite modules.)

Proposition 2. If M is locally finite and finite type, then ExtsU (M,ΣtH̃∗BZ/p) = 0 for all s ≥ 0 and all t.

Before proving this, let’s have a little fun. Let Ωs = Ω ◦ · · · ◦ Ω be the left adjoint to Σs (acting on U ,
so the ‘left’ and ‘right’ are switched from how they are in topology). Recall that Ωst is the tth left derived
functor of Ωs.

Proposition 3. For all s ≥ 1, there is a short exact sequence

0→ Ω(ΩstM)→ Ωs+1
t M → Ω1Ωst−1M → 0.

(This is a degenerate case of a composition of derived functors spectral sequence.)

Proof. (Take p = 2.) Recall that we have

0→ ΣΩ1M → ΦM
λ→M → ΣΩM → 0.

Let P• →M be a projective resolution; we get

0→ ΦΩsP• → ΩsP• → ΣΩs+1P• → 0

(the first term vanishes since ΩsP• is projective [since ΩF (k + 1) = F (k)], and Ω1 vanishes on projectives).
As Φ is an exact functor, taking the homology of this exact sequence of complexes gives us

· · · // ΦΩstM // ΩstM //

%%

ΣΩs+1
t M //

''

ΦΩst−1M // Ωst−1M

ΣΩ(ΩstM)

55

$$

ΣΩ1(Ωst−1M)

77

''
0

99

0 0

77

0

and this splits into short exact sequences as shown, proving the claim.
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Corollary 4. 1. ΩstM = 0 if t > s, and

ΩssM = Ω1 · · ·Ω1︸ ︷︷ ︸
s

M.

2. If M is locally finite, so is ΩstM .

Proof. 1. follows from induction on s, since we know that it’s true for s = 1.

2. If M is locally finite, then so is Φ(M), and hence so is Ω1M , and we can use induction.

Proof of Proposition 2. Let P• →M be a projective resolution. Then

HomU (P•,Σ
tH̃∗RP∞) ∼= HomU (ΩtP•, H̃

∗RP∞).

Taking cohomology gives

HsHomU (P•,Σ
tH̃∗RP∞) ∼= HsHomU (ΩtP•, H̃

∗RP∞) ∼= HomU (HsΩ
tP•, H̃

∗RP∞),

the last isomorphism since H̃∗RP∞ is injective. This, in turn, is isomorphic to HomU (ΩtsM, H̃∗RP∞).

Finally, ΩtsM is locally finite by Corollary 4, so it has no nonzero maps to the injective module H̃∗RP∞ –

any x ∈ H̃∗RP∞ has Ax ∼= A.

We can generalize the statement that H̃∗BZ/p is injective to the following: for all finite Fp-vector spaces
V and all n ≥ 0, J(n)⊗H∗BV is injective.

Definition 5. A module M ∈ U is reduced if λ : ΦM → M is an injection. (Equivalently, if for x ∈ Mn,
Sqn x 6= 0).

For example, H̃∗RP∞ and F (k) are reduced.

Theorem 6 (Lannes-Zarati). If K is a reduced injective and J is injective, and one of them is finite type,
then K ⊗ J is injective.

The Lannes-Zarati theorem implies that J(n) ⊗H∗BV is injective for a finite-dimensional vector space

V . Indeed, J(0) = Fp is a reduced injective, so H∗BFp = J(0)⊕ H̃∗BFp is a reduced injective, so H∗BFnp ∼=
(H∗BFp)⊗n is injective, by Lannes-Zarati, and one easily sees that it’s reduced. By Lannes-Zarati again,
J(n)⊗H∗BFnp is injective.

Fun with adjoints

We know that if F : Uop → Fp−VectorSpaces is a functor that sends sums to products and surjections to
injections, then F is representable, i. e. there’s a JF ∈ U and an isomorphism HomU (M,JF ) ∼= F (M).
(Remember that this is how we got the Brown-Gitler modules. You can explicitly construct JF by JkF =
HomU (F (k), JF ) = F (F (k)), and the Steenrod operations are induced by the relevant maps between the
F (k).)

Corollary 7. If Ψ : U → U preserves surjections (i. e. is right exact) and sends sums to sums, then Ψ has

a right adjoint Ψ̃.

Proof. Define F : Uop → Fp−VectorSpaces by F (M) = HomU (Ψ(M), N). This satisfies the conditions

above, so we get HomU (Ψ(M), N) ∼= HomU (M, Ψ̃(N)). We just have to show that Ψ̃ is a functor, but this
follows from the Yoneda lemma. (If you’ve read Adams’s blue book about spectra, this is how he constructs
Spanier-Whitehead duality.)

Example 8. As a result, Φ has a right adjoint Φ̃. Surprisingly, Σ has a right adjoint Σ̃ as well as its left
adjoint Ω. Let’s look at how these behave.
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First, we have

HomU (M, Φ̃(J(2n))) ∼= HomU (Φ(M), J(2n)) ∼= (Φ(M)2n)∗ ∼= (Mn)∗ ∼= HomU (M,J(n)).

So Φ̃(J(2n)) = J(n) (and likewise, Φ̃(J(2n+ 1)) = 0).
By the same argument,

HomU (M, Σ̃(J(n))) ∼= HomU (ΣM,J(n)) ∼= ((ΣM)n)∗ ∼= (Mn−1)∗ ∼= HomU (M,J(n− 1)).

So Σ̃(J(n)) ∼= J(n− 1).

The adjoint of 1 : Σ̃M → Σ̃M is a map ΣΣ̃M →M . The adjoint of λ : ΦM →M is a map λ̃ : M → Φ̃M .

Proposition 9. The sequence 0→ ΣΣ̃M →M
λ̃→ Φ̃M is exact.

(You should check this.

ΣΣ̃M is the largest submodule of M which is a suspension.

Corollary 10. If M ∈ U , the following are equivalent:

1. M is reduced;

2. λM : ΦM →M is injective;

3. λ̃M : M → Φ̃M is injective;

4. Σ̃M = 0.

Proof. 1 ⇒ 4 because the top Steenrod operation vanishes on any suspension. 4 ⇒ 3 by the exact sequence
above. The remaining steps will be left to the next class. We’ll then use this to show thatK(1) is injective.
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