Lecture 7: Injectives and adjunctions

October 13, 2014

One version of the Sullivan conjecture, which we'll greatly generalize, is that if X is a finite CW-complex, then the space of pointed maps $\max_{x} (B\mathbb{Z}/p, X)$ is contractible. That is,

$$[\Sigma^t B\mathbb{Z}/p, X]_* = 0$$

for all t.

As an algebraic warm-up, we can treat this in cohomology instead of homotopy.

Definition 1. $M \in \mathcal{U}$ is locally finite if for all $x \in M$, the submodule $\mathcal{A}x \subseteq M$ is a finite set.

(This includes things like infinite sums and products of finite modules.)

Proposition 2. If M is locally finite and finite type, then $\operatorname{Ext}^{s}_{\mathcal{U}}(M, \Sigma^{t} \widetilde{H}^{*} B\mathbb{Z}/p) = 0$ for all $s \geq 0$ and all t.

Before proving this, let's have a little fun. Let $\Omega^s = \Omega \circ \cdots \circ \Omega$ be the left adjoint to Σ^s (acting on \mathcal{U} , so the 'left' and 'right' are switched from how they are in topology). Recall that Ω^s_t is the *t*th left derived functor of Ω^s .

Proposition 3. For all $s \ge 1$, there is a short exact sequence

$$0 \to \Omega(\Omega_t^s M) \to \Omega_t^{s+1} M \to \Omega_1 \Omega_{t-1}^s M \to 0.$$

(This is a degenerate case of a composition of derived functors spectral sequence.)

Proof. (Take p = 2.) Recall that we have

$$0 \to \Sigma \Omega_1 M \to \Phi M \xrightarrow{\lambda} M \to \Sigma \Omega M \to 0.$$

Let $P_{\bullet} \to M$ be a projective resolution; we get

$$0 \to \Phi \Omega^s P_{\bullet} \to \Omega^s P_{\bullet} \to \Sigma \Omega^{s+1} P_{\bullet} \to 0$$

(the first term vanishes since $\Omega^s P_{\bullet}$ is projective [since $\Omega F(k+1) = F(k)$], and Ω_1 vanishes on projectives). As Φ is an exact functor, taking the homology of this exact sequence of complexes gives us

and this splits into short exact sequences as shown, proving the claim.

Corollary 4. 1. $\Omega_t^s M = 0$ if t > s, and

$$\Omega_s^s M = \underbrace{\Omega_1 \cdots \Omega_1}_s M.$$

2. If M is locally finite, so is $\Omega_t^s M$.

Proof. 1. follows from induction on s, since we know that it's true for s = 1.

2. If M is locally finite, then so is $\Phi(M)$, and hence so is $\Omega_1 M$, and we can use induction.

Proof of Proposition 2. Let $P_{\bullet} \to M$ be a projective resolution. Then

 $\operatorname{Hom}_{\mathcal{U}}(P_{\bullet}, \Sigma^t \widetilde{H}^* \mathbb{R} P^{\infty}) \cong \operatorname{Hom}_{\mathcal{U}}(\Omega^t P_{\bullet}, \widetilde{H}^* \mathbb{R} P^{\infty}).$

Taking cohomology gives

 $H^{s}\operatorname{Hom}_{\mathcal{U}}(P_{\bullet}, \Sigma^{t}\widetilde{H}^{*}\mathbb{R}P^{\infty}) \cong H^{s}Hom_{\mathcal{U}}(\Omega^{t}P_{\bullet}, \widetilde{H}^{*}\mathbb{R}P^{\infty}) \cong \operatorname{Hom}_{\mathcal{U}}(H_{s}\Omega^{t}P_{\bullet}, \widetilde{H}^{*}\mathbb{R}P^{\infty}),$

the last isomorphism since $\widetilde{H}^* \mathbb{R} P^{\infty}$ is injective. This, in turn, is isomorphic to $\operatorname{Hom}_{\mathcal{U}}(\Omega_s^t M, \widetilde{H}^* \mathbb{R} P^{\infty})$. Finally, $\Omega_s^t M$ is locally finite by Corollary 4, so it has no nonzero maps to the injective module $\widetilde{H}^* \mathbb{R} P^{\infty}$ – any $x \in \widetilde{H}^* \mathbb{R} P^{\infty}$ has $\mathcal{A} x \cong \mathcal{A}$.

We can generalize the statement that $\widetilde{H}^* B\mathbb{Z}/p$ is injective to the following: for all finite \mathbb{F}_p -vector spaces V and all $n \geq 0$, $J(n) \otimes H^* BV$ is injective.

Definition 5. A module $M \in \mathcal{U}$ is reduced if $\lambda : \Phi M \to M$ is an injection. (Equivalently, if for $x \in M^n$, $\operatorname{Sq}^n x \neq 0$).

For example, $\widetilde{H}^* \mathbb{R} P^{\infty}$ and F(k) are reduced.

Theorem 6 (Lannes-Zarati). If K is a reduced injective and J is injective, and one of them is finite type, then $K \otimes J$ is injective.

The Lannes-Zarati theorem implies that $J(n) \otimes H^*BV$ is injective for a finite-dimensional vector space V. Indeed, $J(0) = \mathbb{F}_p$ is a reduced injective, so $H^*B\mathbb{F}_p = J(0) \oplus \widetilde{H}^*B\mathbb{F}_p$ is a reduced injective, so $H^*B\mathbb{F}_p^n \cong (H^*B\mathbb{F}_p)^{\otimes n}$ is injective, by Lannes-Zarati, and one easily sees that it's reduced. By Lannes-Zarati again, $J(n) \otimes H^*B\mathbb{F}_p^n$ is injective.

Fun with adjoints

We know that if $F : \mathcal{U}^{\text{op}} \to \mathbb{F}_p$ -VectorSpaces is a functor that sends sums to products and surjections to injections, then F is representable, i. e. there's a $J_F \in \mathcal{U}$ and an isomorphism $\operatorname{Hom}_{\mathcal{U}}(M, J_F) \cong F(M)$. (Remember that this is how we got the Brown-Gitler modules. You can explicitly construct J_F by $J_F^k = \operatorname{Hom}_{\mathcal{U}}(F(k), J_F) = F(F(k))$, and the Steenrod operations are induced by the relevant maps between the F(k).)

Corollary 7. If $\Psi : \mathcal{U} \to \mathcal{U}$ preserves surjections (i. e. is right exact) and sends sums to sums, then Ψ has a right adjoint $\widetilde{\Psi}$.

Proof. Define $F : \mathcal{U}^{\text{op}} \to \mathbb{F}_p$ -VectorSpaces by $F(M) = \text{Hom}_{\mathcal{U}}(\Psi(M), N)$. This satisfies the conditions above, so we get $\text{Hom}_{\mathcal{U}}(\Psi(M), N) \cong \text{Hom}_{\mathcal{U}}(M, \widetilde{\Psi}(N))$. We just have to show that $\widetilde{\Psi}$ is a functor, but this follows from the Yoneda lemma. (If you've read Adams's blue book about spectra, this is how he constructs Spanier-Whitehead duality.)

Example 8. As a result, Φ has a right adjoint $\tilde{\Phi}$. Surprisingly, Σ has a right adjoint $\tilde{\Sigma}$ as well as its left adjoint Ω . Let's look at how these behave.

First, we have

$$\operatorname{Hom}_{\mathcal{U}}(M, \widetilde{\Phi}(J(2n))) \cong \operatorname{Hom}_{\mathcal{U}}(\Phi(M), J(2n)) \cong (\Phi(M)^{2n})^* \cong (M^n)^* \cong \operatorname{Hom}_{\mathcal{U}}(M, J(n))$$

So $\widetilde{\Phi}(J(2n))=J(n)$ (and likewise, $\widetilde{\Phi}(J(2n+1))=0).$

By the same argument,

$$\operatorname{Hom}_{\mathcal{U}}(M,\widetilde{\Sigma}(J(n))) \cong \operatorname{Hom}_{\mathcal{U}}(\Sigma M, J(n)) \cong ((\Sigma M)^n)^* \cong (M^{n-1})^* \cong \operatorname{Hom}_{\mathcal{U}}(M, J(n-1)).$$

So $\widetilde{\Sigma}(J(n)) \cong J(n-1)$.

The adjoint of $1: \widetilde{\Sigma}M \to \widetilde{\Sigma}M$ is a map $\Sigma\widetilde{\Sigma}M \to M$. The adjoint of $\lambda: \Phi M \to M$ is a map $\widetilde{\lambda}: M \to \widetilde{\Phi}M$.

Proposition 9. The sequence $0 \to \Sigma \widetilde{\Sigma} M \to M \xrightarrow{\widetilde{\lambda}} \widetilde{\Phi} M$ is exact.

(You should check this.

 $\Sigma \Sigma M$ is the largest submodule of M which is a suspension.

Corollary 10. If $M \in \mathcal{U}$, the following are equivalent:

- 1. M is reduced;
- 2. $\lambda_M : \Phi M \to M$ is injective;
- 3. $\widetilde{\lambda}_M : M \to \widetilde{\Phi}M$ is injective;

4.
$$\Sigma M = 0.$$

Proof. $1 \Rightarrow 4$ because the top Steenrod operation vanishes on any suspension. $4 \Rightarrow 3$ by the exact sequence above. The remaining steps will be left to the next class. We'll then use this to show that K(1) is injective. \Box