Lecture 9: Properties of the T-functor

October 17, 2014

This is all coming out of Lionel Schwartz's book, by the way.

Last time we were talking about Lannes's T-functor. If V is a finite-dimensional \mathbb{F}_p -vector space, then $T_V: \mathcal{U} \to \mathcal{U}$ is characterized by

$$\operatorname{Hom}_{\mathcal{U}}(T_V M, N) \cong \operatorname{Hom}_{\mathcal{U}}(M, H^* B V \otimes N).$$

If you Google Lannes, you unfortunately won't find him.

Figure 1: A more famous Lannes.

Proposition 1. T_V is exact and commutes with colimits.

Proof. Every left adjoint commutes with colimits. For exactness, suppose $0 \to M_1 \to M_2 \to M_3 \to 0$ is exact, and look at the sequence

Because $H^*BV \otimes J(n)$ is exact, (*) is exact.

Example/Theorem 2. If M is finite, then $T_V M \cong M$.

(This is an algebraic analog of the fact that $map(BV, X) \simeq X$ for X a finite CW-complex.)

Proof. We can reduce to the case where $M = \Sigma^d \mathbb{F}_p$, by using exactness of T_V and the short exact sequences

$$0 \to M^n \to M^{\leq n} \to M^{\leq (n-1)} \to 0$$

and noting that $M^n = \Sigma^n W$ for a finite-dimensional vector space W. (This is the dual of the skeleton filtration of a CW-complex.) Now,

$$\operatorname{Hom}_{\mathcal{U}}(T_V\Sigma^d\mathbb{F}_p, N) \cong \operatorname{Hom}_{\mathcal{U}}(\Sigma^d\mathbb{F}_p, H^*BV \otimes N) \cong \operatorname{Hom}_{\mathcal{U}}(\Sigma^d\mathbb{F}_p, N) \oplus \operatorname{Hom}_{\mathcal{U}}(\Sigma^d\mathbb{F}_p, H^*BV \otimes N).$$

The second term is zero, since every element $x \in \tilde{H}^* BV \otimes N$ has infinitely many Steenrod operations θ with $\theta(x) \neq 0$, while all the Steenrod operations above \mathcal{P}^0 vanish on $\Sigma^d \mathbb{F}_p$. Thus,

$$\operatorname{Hom}_{\mathcal{U}}(T_V \Sigma^d \mathbb{F}_p, N) \cong \operatorname{Hom}_{\mathcal{U}}(\Sigma^d \mathbb{F}_p, N)$$

By the Yoneda lemma, $T_V \Sigma^d \mathbb{F}_p \cong \Sigma^d \mathbb{F}_p$.

(For example, $\widetilde{H}^* \mathbb{R} P^{\infty} = u \mathbb{F}_2[u]$, and any element of $\widetilde{H}^* \mathbb{R} P^{\infty} \otimes N$ is of the form $x = \sum_{i=1}^n u^i \otimes x_i$, and then $\operatorname{Sq}^{2^k n} \cdots \operatorname{Sq}^n(x) \neq 0$ for all $k \geq 0$.)

Theorem 3 (Lannes). T_V commutes with tensor products.

Corollary 4. If K is an unstable algebra, then so is $T_V K$.

(If this is obvious, it shouldn't be – you shouldn't even believe it, really. It's something special about V.) The multiplication on $T_V K$ is given by

$$T_V K \otimes T_V K \stackrel{\sim}{\leftarrow} T_V (K \otimes K) \stackrel{T_V m}{\rightarrow} T_V K$$

where m is the multiplication on K.

Theorem 5. The resulting functor $T_V: \mathcal{K} \to \mathcal{K}$ (on unstable algebras, now) is left adjoint to

$$L \mapsto H^* B V \otimes L$$
,

so that there's a natural isomorphism of sets

$$\operatorname{Hom}_{\mathcal{K}}(T_V K, L) \cong \operatorname{Hom}_{\mathcal{K}}(K, H^* B V \otimes L).$$

Before we prove these theorems, let's look at some properties of T_V . First, T_V commutes with suspension and loops, because these are both left adjoints, and $H^*BV \otimes \cdot$ commutes with their right adjoints $\widetilde{\Sigma}$ and Σ .

Proposition 6. $T_V \Phi M \cong \Phi T_V M$.

This takes some work. Let p = 2. Define $Q_i \in \mathcal{A}$ by $Q_0 = \mathrm{Sq}^1$, and

$$Q_i = \operatorname{Sq}^{2^i} Q_{i-1} + Q_{i-1} \operatorname{Sq}^{2^i}$$

For example, $Q_1 = \operatorname{Sq}^1 \operatorname{Sq}^2 + \operatorname{Sq}^2 \operatorname{Sq}^1 = \operatorname{Sq}^3 + \operatorname{Sq}^2 \operatorname{Sq}^1$.

These things have some nice properties.

- 1. $Q_i^2 = 0$ and $Q_i Q_j = Q_j Q_i$.
- 2. If K is an unstable algebra, then on K, $Q_i(xy) = Q_i x \cdot y + x \cdot Q_i y$, i. e., the Q_i are derivations.
- 3. The left ideal in \mathcal{A} generated by the Q_i is the two-sided ideal generated by Sq¹. (For an example of this,

$$Sq^{1}Sq^{4} = Sq^{5} = Sq^{2}Sq^{3} + Sq^{4}Sq^{1} = Sq^{2}Sq^{3} + Sq^{2}Sq^{2}Sq^{1} + Sq^{4}Sq^{1}$$

[since $\operatorname{Sq}^2 \operatorname{Sq}^2 \operatorname{Sq}^1 = \operatorname{Sq}^3 \operatorname{Sq}^1 \operatorname{Sq}^1 = 0$], and this is equal to $\operatorname{Sq}^2 Q_1 + \operatorname{Sq}^4 Q_0$.)

3bis. There is an exact sequence of \mathcal{A} -modules

$$0 \to \mathcal{A}\{Q_i\} \to \mathcal{A} \to \Phi \mathcal{A} \to 0.$$

In fact, it's even easier to see that the kernel of the right-hand map is the two-sided ideal generated by Sq^{1} .

(By the way, $\Phi \mathcal{A} = H^* B P!$)

Let $M \in \mathcal{U}$ and

$$F(M)^{k} = \begin{cases} 0 & k = 2n+1\\ \{x \in M^{2n} : Q_{i}x = 0 \text{ for all } i\} & k = 2n. \end{cases}$$

Then $F(M) \subseteq M$ is a sub-unstable \mathcal{A} -module. This follows from property 3: indeed, if $\theta \in \mathcal{A}$, then $Q_i \theta \in \mathcal{A} \operatorname{Sq}^1 \mathcal{A}$, so we can write $Q_i \theta = \sum \theta_j Q_j$. Thus, if $Q_j x = 0$ for all j, then $Q_i \theta x = 0$ for all i and all θ . Recall that $\operatorname{Hom}_{\mathcal{U}}(\Phi M, N) \cong \operatorname{Hom}_{\mathcal{U}}(M, \widetilde{\Phi} N)$.

Recall that $\operatorname{Hom}_{\mathcal{U}}(\Psi M, N) \equiv \operatorname{Hom}_{\mathcal{U}}(M, \Psi)$

Proposition 7. $\Phi \widetilde{\Phi} M \cong F(M)$.

Proof. The natural map $\Phi \tilde{\Phi} M \to M$ factors through F(M), since $\Phi \tilde{\Phi} M$ is concentrated in even degrees, so all the Q_i , which have odd degrees, vanish on it. Both functors are left exact and preserve products, so it suffices to prove that $\Phi \tilde{\Phi} J(n) \to F(J(n))$ is an isomorphism. In $J(\bullet)^*$, we have

$$Q_{i+1}\xi_j = \begin{cases} \xi_{j-i}^{2^i} & i \le j \\ 0 & i > j. \end{cases}$$

The calculation follows.

Corollary 8. $\widetilde{\Phi}(M \otimes N) \cong \widetilde{\Phi}(M) \otimes \widetilde{\Phi}(N)$.

The proof uses that Q_i is a derivation.

Corollary 9. $\widetilde{\Phi}(H^*BV \otimes N) \cong H^*BV \otimes \widetilde{\Phi}(N).$

Proof. One calculates that $\widetilde{\Phi}H^*BV = H^*BV$, using Proposition 7, and then uses the previous corollary. \Box

Proposition 10. $\Phi T_V M = T_V \Phi M$.

Proof. This is what we've been trying to prove this whole time. We just saw that the right adjoints to these functors commute. \Box

3