
MOVING FROM ABELIAN VARIETIES OVER C TO ABELIAN VARIETIES

TO Fp
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Let X be a curve. If X is over C, there is an alternating bilinear form on the homology lattice,
given by the cup product:

H1(X;Z)×H1(X;Z)→ Z.

We saw that H1(X;OX)/H1(X;Z) has the structure of an abelian variety.
More generally, for any curve X, we can define its Jacobian as the functor Jac(X) that sends a

scheme T to the set of line bundles on A×T that are degree zero over each fiber X×{t} and trivial
over each fiber {x} × T . In the above case, this is just the kernel of c1 : H1(X,O×X) → Z, which is
H1(X;OX)/H1(X;Z).

As it turns out, this is actually projective, and you can write it as a quotient of some Symk(X).
This is what motivated Weil to give the abstract definition of an abelian variety. That’s great, but
doesn’t help us get our hands on these things. Over C, the data of a complex torus is just given by
a lattice π1(T ) ∼= H1(T ;Z) ↪→ Cd. One way to algebraize this is to replace the topological π1(T ) by
the algebraic fundamental group,

πet
1 (T ) = lim←−

Y�T

Aut(Y )

where Y ranges over finite étale covers of T . In particular, a map πet
1 (T ) → Z/N corresponds to a

cover Y → T with Z/N as its deck transformation group.
Let Λ be a lattice in H1(T ;Z). There’s some N such that

NH1(T ;Z) ⊆ Λ ⊆ H1(T ;Z),

and this gives a chain of covers of tori

Cd/NH1(T ;Z) � Cd/Λ � Cd/H1(T ;Z),

where the first and last tori are isomorphic. So we get a duality between the category of covers of T
and the category of tori covered by T . But a cover T � Y of degree N is equivalent to an N -torsion
point of T . Thus we get

πet
1 (T ) ∼= lim←−

N∈N
T [N ] ∼=

∏
p

lim←−
k∈N

T [pk].

Definition 1. The `-adic Tate module of an abelian varietyA over a fieldK is T`A = lim←−A[`n](K).

If ` is not equal to the characteristic prime p, then T`A is a good stand-in for the first homology
group of A. This is a Z`-module and has commuting actions by Gal(K/K) and Z` ⊗ EndK(A). As
a Z`-module, it’s isomorphic to Z2d

` .
Let A be an abelian scheme over Zp. This means that it’s projective and each of its fibers are

abelian varieties – in this case, that means that AFp
and AQp

are abelian varieties. For example, A
could be the elliptic curve defined by the projective equation

x3 + z3 = y2z,
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for p 6= 2, 3. We can go from Qp points to Fp points: any Qp point can be represented as [α1, α2, α3]
where αi all lie in Zp but do not all lie in pZp, and we can then reduce this mod p to get [α1, α2, α3] ∈
AFp

(Fp). The kernel of this map corresponds to deformations

Spec(Z/pN ) //

��

AZp

��
Spec(Fp)

e
// AFp

,

or rather the inverse limit of these as N goes to∞. One can check that this is just the formal group
of A, that is, its formal completion at the identity. On the other hand, we can also pass to AQp , and

thence to AQp
. But Qp is isomorphic to C! Moreover, we have

End(AQp
) ∼= End(AZp

) ↪→ End(AFp
).

One consequence of this is that the complex result that the Tate module is free of rank 2d is also
true over a finite field.

Here’s an example. Let X5 be defined by the projective equation x5 + y5 = z5 over F2. This is a
smooth curve of degree 5 in P2. Its genus is(

d− 1

n

)
=

(
4

2

)
= 6.

Thus, its Jacobian is a 6-dimensional abelian variety. The `-adic Tate module, for any ` 6= 2, this is
a Z`-module of rank 12. So

V`(JacX5) := T`(JacX5)⊗Q`

is a 12-dimensional vector space, and Tate showed that this abelian variety is classified by the
characteristic polynomial of the Frobenius endomorphism acting on this vector space. (For any
` 6= 2!)

But we still don’t know what JacX5 is. One approach to finding its π1 is to find covers of X5

and use the functoriality of Jac. Another approach is the fact that

V ∨` = H1
et((JacX5)F2

;Q`),

the first étale cohomology group; and as it turns out, this is isomorphic to H1
et((X5)F2

;Q`). There’s
also a comparison theorem which tells us that this étale cohomology with Z` coefficients is isomorphic
to the singular cohomology of (X5)C with Z` coefficients. Finally, the Frobenius action acts on
H2

sing((X5)C;Z`) ∼= π1(C×)⊗ Z`
∼= Z` by multiplying by p, and on H0

sing((X5)C;Z`) ∼= Z` trivially.
We thus obtain the Lefschetz theorem:

|X5(Fq)| = 1− Tr FrobN
p + pN ,

where q = pN .
Joel then drew a table with these point counts for X5, and used them to show that in this case,

the Jacobian is just a product of elliptic curves, and has no rational points – thus proving Fermat’s
Last Theorem when n = 5!


