MOVING FROM ABELIAN VARIETIES OVER \mathbb{C} TO ABELIAN VARIETIES
 TO \mathbb{F}_{p}

JOEL SPECTER

Let X be a curve. If X is over \mathbb{C}, there is an alternating bilinear form on the homology lattice, given by the cup product:

$$
H^{1}(X ; \mathbb{Z}) \times H^{1}(X ; \mathbb{Z}) \rightarrow \mathbb{Z}
$$

We saw that $H^{1}\left(X ; \mathcal{O}_{X}\right) / H^{1}(X ; \mathbb{Z})$ has the structure of an abelian variety.
More generally, for any curve X, we can define its Jacobian as the functor $\operatorname{Jac}(X)$ that sends a scheme T to the set of line bundles on $A \times T$ that are degree zero over each fiber $X \times\{t\}$ and trivial over each fiber $\{x\} \times T$. In the above case, this is just the kernel of $c_{1}: H^{1}\left(X, \mathcal{O}_{X}^{\times}\right) \rightarrow \mathbb{Z}$, which is $H^{1}\left(X ; \mathcal{O}_{X}\right) / H^{1}(X ; \mathbb{Z})$.

As it turns out, this is actually projective, and you can write it as a quotient of some $\operatorname{Sym}^{k}(X)$. This is what motivated Weil to give the abstract definition of an abelian variety. That's great, but doesn't help us get our hands on these things. Over \mathbb{C}, the data of a complex torus is just given by a lattice $\pi_{1}(T) \cong H_{1}(T ; \mathbb{Z}) \hookrightarrow \mathbb{C}^{d}$. One way to algebraize this is to replace the topological $\pi_{1}(T)$ by the algebraic fundamental group,

$$
\pi_{1}^{e t}(T)=\varliminf_{Y \rightarrow T}^{\lim } \operatorname{Aut}(Y)
$$

where Y ranges over finite étale covers of T. In particular, a map $\pi_{1}^{e t}(T) \rightarrow \mathbb{Z} / N$ corresponds to a cover $Y \rightarrow T$ with \mathbb{Z} / N as its deck transformation group.

Let Λ be a lattice in $H_{1}(T ; \mathbb{Z})$. There's some N such that

$$
N H_{1}(T ; \mathbb{Z}) \subseteq \Lambda \subseteq H_{1}(T ; \mathbb{Z})
$$

and this gives a chain of covers of tori

$$
\mathbb{C}^{d} / N H_{1}(T ; \mathbb{Z}) \rightarrow \mathbb{C}^{d} / \Lambda \rightarrow \mathbb{C}^{d} / H_{1}(T ; \mathbb{Z})
$$

where the first and last tori are isomorphic. So we get a duality between the category of covers of T and the category of tori covered by T. But a cover $T \rightarrow Y$ of degree N is equivalent to an N-torsion point of T. Thus we get

$$
\pi_{1}^{e t}(T) \cong \lim _{N \in \mathbb{N}} T[N] \cong \prod_{p} \lim _{k \in \mathbb{N}} T\left[p^{k}\right]
$$

Definition 1. The ℓ-adic Tate module of an abelian variety A over a field K is $T_{\ell} A=\lim _{\longleftarrow} A\left[\ell^{n}\right](\bar{K})$.
If ℓ is not equal to the characteristic prime p, then $T_{\ell} A$ is a good stand-in for the first homology group of A. This is a \mathbb{Z}_{ℓ}-module and has commuting actions by $\operatorname{Gal}(\bar{K} / K)$ and $\mathbb{Z}_{\ell} \otimes \operatorname{End}_{K}(A)$. As a \mathbb{Z}_{ℓ}-module, it's isomorphic to $\mathbb{Z}_{\ell}^{2 d}$.

Let A be an abelian scheme over \mathbb{Z}_{p}. This means that it's projective and each of its fibers are abelian varieties - in this case, that means that $A_{\mathbb{F}_{p}}$ and $A_{\mathbb{Q}_{p}}$ are abelian varieties. For example, A could be the elliptic curve defined by the projective equation

$$
x^{3}+z^{3}=y^{2} z
$$

[^0]for $p \neq 2,3$. We can go from \mathbb{Q}_{p} points to \mathbb{F}_{p} points: any \mathbb{Q}_{p} point can be represented as $\left[\alpha_{1}, \alpha_{2}, \alpha_{3}\right.$] where α_{i} all lie in \mathbb{Z}_{p} but do not all lie in $p \mathbb{Z}_{p}$, and we can then reduce this $\bmod p$ to get $\left[\overline{\alpha_{1}}, \overline{\alpha_{2}}, \overline{\alpha_{3}}\right] \in$ $A_{\mathbb{F}_{p}}\left(\mathbb{F}_{p}\right)$. The kernel of this map corresponds to deformations

or rather the inverse limit of these as N goes to ∞. One can check that this is just the formal group of A, that is, its formal completion at the identity. On the other hand, we can also pass to $A_{\mathbb{Q}_{p}}$, and thence to $A_{\overline{\mathbb{Q}_{p}}}$. But $\overline{\mathbb{Q}_{p}}$ is isomorphic to $\mathbb{C}!$ Moreover, we have
$$
\operatorname{End}\left(A_{\overline{\mathbb{Q}_{p}}}\right) \cong \operatorname{End}\left(A_{\overline{\mathbb{Z}_{p}}}\right) \hookrightarrow \operatorname{End}\left(A_{\overline{\mathbb{F}_{p}}}\right) .
$$

One consequence of this is that the complex result that the Tate module is free of rank $2 d$ is also true over a finite field.

Here's an example. Let X_{5} be defined by the projective equation $x^{5}+y^{5}=z^{5}$ over \mathbb{F}_{2}. This is a smooth curve of degree 5 in \mathbb{P}^{2}. Its genus is

$$
\binom{d-1}{n}=\binom{4}{2}=6 .
$$

Thus, its Jacobian is a 6 -dimensional abelian variety. The ℓ-adic Tate module, for any $\ell \neq 2$, this is a \mathbb{Z}_{ℓ}-module of rank 12. So

$$
V_{\ell}\left(\operatorname{Jac} X_{5}\right):=T_{\ell}\left(\operatorname{Jac} X_{5}\right) \otimes \mathbb{Q}_{\ell}
$$

is a 12 -dimensional vector space, and Tate showed that this abelian variety is classified by the characteristic polynomial of the Frobenius endomorphism acting on this vector space. (For any $\ell \neq 2$!)

But we still don't know what Jac X_{5} is. One approach to finding its π_{1} is to find covers of X_{5} and use the functoriality of Jac. Another approach is the fact that

$$
V_{\ell}^{\vee}=H_{e t}^{1}\left(\left(\operatorname{Jac} X_{5}\right)_{\overline{\mathbb{F}_{2}}} ; \mathbb{Q}_{\ell}\right),
$$

the first étale cohomology group; and as it turns out, this is isomorphic to $H_{e t}^{1}\left(\left(X_{5}\right)_{\overline{\mathbb{F}_{2}}} ; \mathbb{Q}_{\ell}\right)$. There's also a comparison theorem which tells us that this étale cohomology with \mathbb{Z}_{ℓ} coefficients is isomorphic to the singular cohomology of $\left(X_{5}\right)_{\mathbb{C}}$ with \mathbb{Z}_{ℓ} coefficients. Finally, the Frobenius action acts on $H_{\text {sing }}^{2}\left(\left(X_{5}\right)_{\mathbb{C}} ; \mathbb{Z}_{\ell}\right) \cong \pi_{1}\left(\mathbb{C}^{\times}\right) \otimes \mathbb{Z}_{\ell} \cong \mathbb{Z}_{\ell}$ by multiplying by p, and on $H_{\text {sing }}^{0}\left(\left(X_{5}\right)_{\mathbb{C}} ; \mathbb{Z}_{\ell}\right) \cong \mathbb{Z}_{\ell}$ trivially. We thus obtain the Lefschetz theorem:

$$
\left|X_{5}\left(\mathbb{F}_{q}\right)\right|=1-\operatorname{Tr} \operatorname{Frob}_{p}^{N}+p^{N},
$$

where $q=p^{N}$.
Joel then drew a table with these point counts for X_{5}, and used them to show that in this case, the Jacobian is just a product of elliptic curves, and has no rational points - thus proving Fermat's Last Theorem when $n=5$!

[^0]: Typed by Paul VanKoughnett.

