
THE CONSTRUCTION OF TAF

PAUL VANKOUGHNETT

1. Introduction

The primary source for all of this is [1], chapters 7 and 8.
Last talk, we defined a family of Deligne-Mumford stacks Sh(Kp) over Zp, which we called

Shimura varieties. We were only able to define them with considerable time and notation, but the
key points to be retained are as follows.

• The stacks parametrize n2-dimensional abelian varieties with some additional structure on
their endomorphism rings and a Z(p)-polarization, which can carry an integral Kp-level
structure.

• There’s a dependence on a compact open subgroup Kp ⊆ GU2n2(Ap,∞), where Ap,∞ =
Q⊗

∏
` 6=p Z` is the adèles away from p and ∞.

• Changing the subgroup Kp changes the stack by an étale map. For small Kp, it’s a smooth
quasi-projective scheme.

• The endomorphism structure was designed in such a way as to pick a canonical 1-dimensional,
height n p-divisible group εA(u), thus giving a map Sh(Kp)→Mp(n).

In order to pull a spectrum out of this hat, we need to apply Lurie’s realization theorem. We
recall one version of the theorem.

Theorem 1 (Lurie). Let X be a locally Noetherian separated Deligne-Mumford stack, complete over
a local ring with perfect residue field, and let G : X →Mp(n) be a formally étale map. Then there
is a homotopy sheaf of weakly even periodic E∞-ring spectra EG on the étale site of X , such that
for any formal affine étale open Spf(R) → X , we have π0EG(R) = R, and the formal group law of
EG(R) is precisely the formal part of f∗G.

Today, we’ll apply this theorem to the map Sh(Kp)∧p → Mp(n). The hypotheses on the stack
are easy to check, given that it has an étale cover by a quasi-projective scheme. The hard part is
showing that the map is formally étale. All this means is that deformations of abelian schemes with
the PEL structure described above are the same as deformations of the underlying 1-dimensional
p-divisible groups. More precisely:

Proposition 2. Let S be a scheme where p is locally nilpotent, and let j : S0 ↪→ S be a closed
embedding with nilpotent ideal sheaf. Then the diagram of categories

X ′Kp(S) //

��

X ′Kp(S0)

��
Mp(n)(S) //Mp(n)(S0)

is a (2-)pullback diagram.

Here X ′Kp is one of the models of Sh(Kp) discussed last time, parametrizing abelian varieties with
polarization, endomorphism structure, and rational Kp-level structure up to isogeny. Mp(n) is the
moduli stack of 1-dimensional height n p-divisible groups.
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2. The Serre-Tate theorem

The key point of this statement is much older and interesting in its own right. This is the Serre-
Tate theorem, which says that deformations of abelian varieties (forgetting the extra structure) are
the same as deformations of their underlying p-divisible groups.

Theorem 3 (Serre-Tate). Let S be a scheme where p is locally nilpotent, and let j : S0 ↪→ S be a
closed embedding with nilpotent ideal sheaf. Then the diagram of categories

{abelian schemes over S} //

��

{abelian schemes over S0}

��
{p-divisible groups over S} // {p-divisible groups over S0}

is a (2-)pullback diagram.

The following neat proof, due to Drinfeld and given in [2], relies on the formal relationship between
abelian varieties and p-divisible groups in the more general setting of abelian sheaves for the fppf
topology. Since the objects under consideration all satisfy Zariski descent, we can immediately
reduce to the case where the ideal sheaf I is honestly nilpotent. For definiteness, we say that pN = 0
on S and that Ik+1 = 0.

Lemma 4. Under the hypotheses above, let G and H be (fppf) abelian sheaves over S that are p-
divisible, formally smooth, and whose nilradicals are (fppf) locally representable by a formal group.
Then the groups Hom(G,H) and Hom(G0,H0) are p-torsion free, and the map

Hom(G,H)→ i∗i
∗Hom(G,H) = Hom(G0,H0)

is injective with pNk-torsion cokernel.

Proof. The first claim follows from the p-divisibility of the groups involved. To understand the
second, let

HI = ker(G→ i∗i
∗G),

a subgroup scheme of H. I claim that HI is pNk-torsion. Since I is nilpotent, HI is a subgroup
of HN, where N is the nilradical sheaf of S; but this is the nilradical of H, which by hypothesis, is
locally a formal group, of the form SpfOS [[X1, . . . , Xn]]. In particular, for T an S-scheme, we can
locally represent T -points of HI as tuples (x1, . . . , xn) ∈ (IOT )n. We then have

[pN ](x1, . . . , xn)i = pNxi + (terms of degree ≥ 2) = (terms of degree ≥ 2),

since pN = 0 on S and thus on T . Thus, [pNk](HI) ⊆ HI2 , and by induction, [pNk](GI) ⊆ GIk+1 = 0.
Through the remainder of this section, we let M = pNk. The irrelevance of this number cannot

be overstated.
Now, the kernel of Hom(G,H) → i∗i

∗Hom(G,H) is evidently Hom(G,HI), but G is p-divisible
while HI is M -torsion, so this group is zero. This establishes injectivity.

Finally, we must show that for any f0 : G0 → H0, there is a lifting φM (f0) : G → H of Mf0

(which will evidently be unique, by injectivity). Since H is smooth and I is nilpotent, H→ i∗H0 is
a surjection of sheaves. (This is just the lifting property of smooth morphisms.) There is thus an
exact sequence

0→ HI → H→ i∗H0 → 0,

and since HI is M -torsion, we get an isomorphism MH ∼= Mi∗H0. Since Mf0 has image in MH0,
it then lifts to G→ H.

As a final point, we note that f0 itself lifts to f , then φM (f0) = Mf , by injectivity; conversely,
if φM (f0) is of the form MF for some F : G→ H, then since Hom(G0,H0) is p-torsion-free, we see
that F0 = f0. �
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Proof of the Serre-Tate theorem. We can restate the problem as follows: we want to show that the
obvious functor from the category of abelian schemes over S to the category of abelian schemes over
S0 together with a deformation of their p-divisible groups over S is an equivalence.

To prove essential surjectivity, let A0 → S0 be an abelian scheme and let G→ S be a p-divisible
group deforming A0[p∞]; we will construct a deformation of A0 realizing G. Assume that there is
some deformation A0 to an abelian scheme B over S, with B0

∼= A0 its reduction mod I. There’s
then an isomorphism f0[p∞] : B0[p∞] ∼= A0[p∞]. By Lemma 4, Mf0[p∞] lifts to some isogeny

φM (f0[p∞]) : B[p∞]→ G.
Since f0[p∞] is an isomorphism, there’s also a φM (f0[p∞]−1) : G → B[p∞], and the composition
φM (f0[p∞]−1)φM (f0[p∞]) : B → B is just [M2]. It follows that φM (f0[p∞]) identifies G with
B[p∞]/K, where K is a subgroup scheme of the finite group scheme B[M2]. Letting A = B/K, we
evidently have A[p∞] ∼= G and i∗i

∗A ∼= A0.
To prove full faithfulness, let f0 : A0 → B0 be a homomorphism of abelian schemes and let

f [p∞] : A[p∞] → B[p∞] be a homomorphism of p-divisible groups deforming f0[p∞]. We will show
that there is a unique homomorphism f : A→ B inducing f [p∞] and f0. By Lemma 4 applied to A
and B, any lifting of f0 to a map A→ B is unique, so it remains to prove existence. Moreover, the
lemma tells us that a lifting φM (f0) of Mf0 exists. But φM (f0)[p∞] lifts Mf0[p∞], as does Mf [p∞],
so applying the lemma to A[p∞] and B[p∞], we see that they must be equal. In particular, φM (f0)
kills A[p∞][M ] = A[M ], so it is actually of the form MF for some F : A → B lifting f0. Finally,
F [p∞] lifts f0[p∞], so by uniqueness, F [p∞] = f [p∞], as desired. �

3. Deformations of abelian varieties

The attentive reader will have noticed a gap in the proof of essential surjectivity – we did not
prove that deformations of abelian schemes over S0 to abelian schemes over S always exist! This is
true, and its proof uses the full weight of classical deformation theory and the geometry of abelian
varieties.

Theorem 5. Let S0 ↪→ S be a closed immersion of schemes defined by a nilpotent sheaf of ideals I,
and A0 → S0 an abelian scheme. Then there is an abelian scheme A→ S such that A×S S0 = A0.

Proof. A very rough sketch of the proof:

(1) Reduce to the case where S0 = SpecR0 for R0 an artinian algebra over a field k, and
S = SpecR is a thickening by an ideal I with I ∼= k as an R-module.

(2) The existence of deformations of A0 over R, as a scheme, are obstructed by a cohomology
class θ ∈ H2(A0;TA0

⊗k I) ∼= H2(A0;TA0
), where TA0

is the tangent sheaf of A0.
(3) Since A = A0⊗R0

k is an abelian variety, TA
∼= (TA)0⊗OA, and the cohomology of OA is an

exterior algebra on H1(A,OA). In particular, [−1]∗ acts as −1 on H1(A,OA), thus trivially

on H2(A,OA), thus as −1 on H2(A, TA).
(4) We also have that [−1]∗θ = θ. So in nontwo characteristic, θ = 2θ = 0; in characteristic

two, we must use a more complicated map than [−1], but a similar argument.
(5) Thus A0 deforms over R as a scheme. To deform it as an abelian scheme, it suffices to deform

the map j0 : A0×R0 A0 → A0 sending (x, y) 7→ x− y, in such a way that the evident axioms
are satisfied. Everything being separated, deforming this map is equivalent to deforming its
graph, which is a closed subscheme Γ0 of A0 ×R0

A0 ×R0
A0.

(6) Deformations of this closed subscheme are now obstructed by a class θ′ ∈ H1(A × A;NΓ),

where NΓ is the normal bundle of the graph Γ of j. but this vanishes when restricted to

A×{0}, {0}×A, or the diagonal, so by the Künneth theorem, it vanishes over all of A×A.
(7) This shows that a deformation of j exists. The set of such deformations is a torsor for

H0(A × A;NΓ), which is isomorphic to (NΓ)(0,0). Thus, there is a unique deformation of
j that restricts to zero on the diagonal in A ×R {0}, giving the identity axiom. From this
uniqueness, one easily observes that the other group axioms are satisfied.
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4. Deformations of PEL abelian varieties

We’re now in good shape to prove Proposition 2. This is where all the seemingly random structure
we introduced last time really comes into play. As usual, let (A0, i0, λ0, [η0]) be a p-divisible group
over S0, and G a p-divisible group over S deforming εA0(u). First, we required a splitting OB,u ∼=
Mn(Zp), with ε sent to the matrix that projects a vector onto its first coordinate. This means that
over Zp, we have A0(u) ∼= (εA0(u))n. Thus, the height n deformation G canonically determines an
OB,u-linear height n2 deformation Gn of A0(u).

We’d now like to bump this up to a deformation of A0(p). Since p = uu in F , we have

A0(p) ∼= A0(u)×A0(u).

Since the λ0-Rosati involution extends complex conjugation on F , we get

A0(p) ∼= A0(u)×A0(u)∨

via the isomorphism A0(u)→ A0(u)∨ induced by λ : A0 → A∨0 . So there’s a canonical OB,(p)-linear

height 2n2 deformation Gn× (G∨)n of the p-divisible group of A0 to S. By the Serre-Tate theorem,
this determines a deformation A of A0 to S, and the action of OB,(p) on the p-divisible group
deforms to an action i : OB,(p) → End(A)(p) extending i0. (Importantly, the Serre-Tate theorem is
a statement about categories, so we can deform homomorphisms of abelian varieties as well as the
objects themselves.)

The polarization λ should be a map A → A∨, so by the Serre-Tate theorem, we can define it
given maps A0 → A∨0 and Gn × (G∨)n → (G∨)n × Gn. The first should obviously be λ0. For the
second, we use the twist isomorphism, which is easily seen to deform the polarization isomorphism

A(u)×A(u)→ A∨(u)×A∨(u).

(Technically, our polarization λ0 is only defined as a map after multiplying by some integer N
prime to p, but deforming Nλ0 and dividing by N gives a deformation of λ0, using the fact that
endomorphism rings of abelian varieties are Q-algebras.)

Anyway, both λ0 and the twist isomorphism are Rosati-symmetric, so λ will be as well. There’s
also a positivity condition, which can be checked at the fibers over geometric points; but S0 and S
have the same geometric points. This also shows that the level structure has a unique extension.

Finally, it’s clear that everything we’ve done is functorial for morphisms in X ′Kp(S0) – any choices
were dictated by the algebra of B or the Serre-Tate theorem. This proves Proposition 2, as well as
the following fun corollary:

Corollary 6. Sh(Kp)→ Zp is smooth of relative dimension n− 1.

5. The topological automorphic forms spectrum

Theorem 7. There exists a homotopy sheaf of weakly even periodic E∞-ring spectra on the étale
site of Sh(Kp)∧p , E(Kp), such that for any étale map

(A, i, λ, [η]) : Spf(R)→ Sh(Kp)∧p ,

the formal group of E(Kp)(R) is canonically isomorphic to εA(u)0.

Definition 8. The topological automorphic forms spectrum is the global sections of this homotopy
sheaf:

TAF (Kp) = E(Kp(Sh(Kp)∨p ).

As with the Goerss-Hopkins-Miller theorem, we can use the algebraic geometry of the stack to
compute the homotopy groups of the TAF spectrum (or indeed, the sections of E(Kp) over any étale
open).
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Definition 9. If G is a formal group over a scheme S, ωG = Lie(G)∨ is the line bundle over S of
invariant 1-forms on G. We’ll let ω be the line bundle on Sh(Kp) defined by

ω(A, i, λ, [η]) = ωεA(u)0 .

Proposition 10. If E is a weakly even periodic ring spectrum with formal group GE, then there is
a canonical isomorphism

π2tE ∼= Γ(SpecE0, ω⊗tGE
).

(Of course, πkE = 0 for k odd.)

Thus, if f : U → Sh(Kp)∧p is a formal affine étale open, then we have

π2t(EG(U)) = Γ(U, ω⊗tf∗G0).

If f : U → Sh(Kp)∧p is a general étale open, then take an étale cover U ′ → U by a formal affine
scheme. We get a cosimplicial object by evaluating EG on the successive iterated pullbacks

U ′n+1 = U ′ ×U · · · ×U U ′︸ ︷︷ ︸
n+1

,

all of which are affine formal schemes since our stack is separated. By homotopy descent,

EG(U) ' holim EG(U ′•+1).

The Bousfield-Kan spectral sequence of this homotopy limit then takes the following form.

Theorem 11. For f : U → Sh(Kp)∧p an étale map from a scheme, there is a conditionally conver-
gent descent spectral sequence

Es,2t2 = Hs
zar(U, ω

⊗t)⇒ π2t−s(E(Kp)(U)).

In particular, on global sections this is a spectral sequence

Es,2t2 = Hs
zar(Sh(Kp)∧p , ω

⊗t)⇒ π2t−s(TAF (Kp)).
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