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1 Introduction

Recall that we’re trying to realize the Â-genus as an E∞ map MSpin → KO; more generally, we’d like to
compute π0E∞(MSpin,KO). The arithmetic square exhibits KO has a homotopy pullback

KO //

��

∏
pKOp

��

KOQ //
(∏

pKOp

)
Q
,

(where KOp is and forever shall be p-complete real K-theory), and thus we have a homotopy pushout

E∞(MSpin,KO) //

��

∏
pE∞(MSpin,KOp)

��

E∞(MSpin,KOQ) //
(∏

pE∞(MSpin,KOp)
)
Q
.

By the general nonsense of [4], the space of E∞ maps MSpin→ X is the space of lifts in the diagram

spin // gl1S

��

// gl1S/spin

yy

// bspin

gl1X;

in particular, it’s nonempty iff the composition spin→ gl1X is trivial, in which case it’s given by [bspin, gl1X].
We’re thus reduced to finding [spin, gl1KO] and [bspin, gl1KO]. By the above arithmetic square argument,

this reduces to finding these mapping spaces for gl1KOQ,
∏
p gl1KOp, and

(∏
p gl1KOp

)
Q

. Ben’s done this

for KOQ, and in these notes, we’ll finish up by doing the other two steps.

2 The Bousfield-Kuhn functor and finite localization

If you’ve ever looked at Bousfield’s construction of localization [5], you’ll know that in its original form, it
uses cell structures for the spectra involved and a cardinality argument: the fiber of LEX is given by killing
all the maps to X from E-acyclic spectra with less than κ cells, for a certain cardinal κ depending on E. If
we’d like to, we can instead build this cardinal κ into the construction, at the cost of losing some E-localness.

Definition 1. A spectrum X is finitely E-local if [A,X]∗ = 0 whenever A is a finite E-acyclic spectrum.

X is finitely E-acyclic if [X,B]∗ = 0 for any finitely E-local spectrum B. A map X → LfEX is a finite

E-localization if LfEX is finitely E-local and the cofiber of the map is finitely E-acyclic.
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Theorem 2 ( [8], [7] ). For any E, there’s a finite E-localization functor LfE with a natural transformation
from the identity.

A good exposition is in [8]; the proof of the above theorem, though, is a fairly obvious generalization of
Bousfield’s original. There are a few things worth saying about this functor:

• An E-local spectrum is already finitely E-local; conversely, there’s a natural map LfE → LE .

• By a Spanier-Whitehead duality argument, LfEX ' X ∧ LfES. Thus, in particular, finite localization

is Bousfield localization with respect to the spectrum LfES.

• Fracture squares for finite localizations exist in exactly the same way as those for general localizations.

• When E = K(n) and X is type n, LfEX is the telescope hocolim Σ−ndX of any map vn-self map g :

ΣdX → X. Thus the telescope conjecture at level n is equivalent to the statement that LfK(n) = LK(n);

we can therefore generalize the telescope conjecture to any spectrum E other than K(n), and in some
cases it’s even true.

(If you’re looking for a summer project on the interactions between set theory and homotopy theory, why
not consider localizations of bounded cardinality for larger cardinals than ℵ0?)

Since the computation we’re doing involves a fair bit of bouncing around between spectra, their connective
covers, and their infinite loop spaces, the following theorem is useful.

Theorem 3 ( [6] ). For any n ≥ 1, there is a functor Φn : HoSpaces∗ → HoSpectra such that ΦnΩ∞ ∼= LK(n).

Likewise, there’s a functor Φfn : HoSpaces∗ → HoSpectra such that ΦfnΩ∞ ∼= LfK(n), and we can take

Φn = LK(n)Φ
f
n.

These are called the Bousfield-Kuhn functors: Bousfield constructed them for n = 1, and Kuhn
extended this to all n. The point of this is that K(n)-localization of spectra factors through spaces; alterna-
tively, you can get back from spaces to spectra at the cost of K(n)-localizing.

We’ll see the use of this as we keep going. One immediate conclusion is the following. If R is an
E∞ spectrum and X a pointed space, then the units of R are defined so that the pointed unstable maps
[X,Ω∞gl1R]+ are

[X,Ω∞gl1R]+ ∼= (1 + R̃0(X+))× ⊆ R0(∗)⊕ R̃0(X+) = R0(X+) ∼= [X,Ω∞R]+.

When X = Sk for k ≥ 1, this map is clearly an isomorphism. Thus we have a weak equivalence of spaces
Ω∞gl1R〈1〉

∼→ Ω∞R〈1〉. The Bousfield-Kuhn functor lets us lose the connectivity and move to spectra as
long as we K(n)-localize. Thus, there’s a weak equivalence

LK(n)gl1R
∼→ LK(n)R,

and the composition

gl1R→ LK(n)gl1R→ LK(n)R

is Rezk’s logarithm functor. Similar statements hold for finite localizations.

3 How to K(1)-localize friends and dualize people

We’re looking for maps [spin, gl1KOp] and [bspin, gl1KOp]. In this section, we’ll show that it suffices to
deal with these K(1)-locally. First, we deal with those pesky gl1’s, which don’t generally commute with
localization.

Theorem 4. If R is an En-local E∞-ring spectrum, then π∗gl1R→ π∗Lngl1R is an isomorphism in degrees
greater than or equal to n+ 2.
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Proof. The first step is to replace localization with finite localization. Taking 0 ≤ m ≤ n and using the
logarithm, we have LK(m)gl1R ' LK(m)R and LfK(m)gl1R ' LfK(m)R. Unfortunately, R isn’t necessarily

K(m)-local, but using the fracture squares for LnR and LfnR and the fact that LnR ' LfnR (they’re both

just R), we get LK(m)R ' LfK(m)R, and thus that LK(m)gl1R ' LfK(m)gl1R. Reversing the argument of the

previous sentence then gives

Lngl1R ' Lfngl1R.

Thus, the fiber F of gl1R→ Lngl1R is also the fiber of gl1R→ Lfngl1R. We want to prove that π∗F = 0 in
degrees greater than or equal to n+ 1.

Now, gl1R→ Lfngl1R is given by smashing gl1R with S → LfnS. By construction, the fiber of this map is
a filtered colimit of finite En-acyclic (type n+1) spectra Zα. Thus F = hocolimk Fα, where Fα = gl1R∧Zα.

Since each Zα is type n + 1, it’s acyclic with respect to K(0) = HQ, and thus its homotopy groups are
torsion. The same obviously applies for Fα.

Since each Zα is finite, we can form its Spanier-Whitehead dual DZα, which is also finite, and thus for
some q, ΣqDZα = Σ∞Kα for a connected finite complex (that is, a space) Kα. Then

Ω∞Σ−qFα ' Ω∞F (ΣqDZα, gl1R),

where F denotes the function spectrum; of course, this is just the function space Spectra(Σ∞Kα, gl1R), which
is the function space Spaces∗(Kα,Ω

∞gl1R). Since Kα is connected, we can use the unstable logarithm to
replace this with Spaces∗(Kα,Ω

∞R) = Spectra(Σ∞Kα, R); but R is En-local and Kα is En-acyclic, so this
is trivial. Thus, πnFα = 0 for n > q. We say that Fα is coconnected.

Since Fα is p-local, torsion and coconnected, the fiber of Fα → PnFα can be factored into finitely many
wedges of ΣqHFp with q > n. Again using the Ravenel-Wilson calculation K(m)∗K(Fp, q) = 0 for q > m,
we get that for q > n,

[ΣqHFp, gl1R] = π0E∞(Σ∞+K(Fp, q), R) ⊆ [Σ∞+K(Fp, q), R] = 0,

since R is En-local. Likewise, [ΣqHFp, Lngl1R] = 0 with even fewer steps. Thus, [ΣqHFp, F ] = 0 for q > n,
and so [Fα, F ] ∼= [PnFα, F ], proving that F = PnF , as desired.

In the case R = KOp, R is E1-local, so gl1KOp → LK(1)gl1KOp is an isomorphism on homotopy groups
in degrees at least 3. And wouldn’t you know it, it just so happens this is where spin has its first homotopy
group! What this means is that, as spin orientations correspond to dotted maps in the diagram

spin // gl1S

��

// gl1S/spin

ww ��

// bspin

gl1KOp // LK(1)gl1KOp,

and maps from spin are the obstructions to the existence of these maps, a dotted map exists to gl1KOp iff it
does to LK(1)gl1KOp. Moreover, bspin has its first homotopy group in degree 4, so clearly [bspin, gl1KOp] ∼=
[bspin, LK(1)gl1KOp]. Thus we have proved that

E∞(MSpin, gl1KOp) ' E∞(MSpin, LK(1)gl1KOp)

in that one is nonempty iff the other is in which case they’re indeed weakly equivalent.

Remark 5. Since bspin is 3-connected, we just scraped by here. I’m pretty sure this is why you can’t spin-
orient tmf , but only string-orient it: you now need to deal with both K(1)-local and K(2)-local stuff, and
K(2)-localization on gl1tmfp is now only an isomorphism on homotopy groups in degrees 4 and above.

We thus are able to replace our codomain with a K(1)-local spectrum. Now we go about replacing the
domain.

Lemma 6. LK(1)bspin ' KOp.
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Proof. Clearly Kp is K(1)-local; KOp is a fiber of a self-map of Kp, so it’s also K(1)-local; using the
Bousfield-Kuhn functor, we get that LK(1)bo = KOp. Finally, bspin → bo is an isomorphism on K(1)∗.
Since E(1) = Kp and the Bousfield class of K(1) is a summand of that of E(1), it suffices to show that this
map is an isomorphism on (completed, complex) K-theory. For p > 2, this map is already an isomorphism;
for p = 2, its fiber has two nonzero homotopy groups, both of which are F2’s, and we decompose the map
as a composition of two maps, each of whose fibers is an HF2. There’s probably an easier way of proving
that K(1)∗HF2 = 0, but one way to go about it is to use the Ravenel-Wilson computation of the Morava
K-theories of Eilenberg-Mac Lane spaces, which all vanish stably [9].

Thus, at last, we have

π0E∞(MSpin, gl1KOp) ∼= [bspin, gl1KOp]
∼= [bspin, LK(1)gl1KOp]
∼= [KOp, LK(1)gl1KOp] (by the above lemma)
∼= [KOp, LK(1)KOp] (via the logarithm)
∼= [KOp,KOp]. (since KOp is K(1)-local)

This is the algebra of operations on p-complete real K-theory. Onwards to its computation!

4 Measure for measure

We’re trying to compute [KOp,KOp] = KO0
pKOp. It turns out to be best to study this cohomology group

via its duality with homology, and to work in the K(1)-local category. To that end, we define

Definition 7. If E and X are K(1)-local spectra, the (K(1))-completed homology of X with coefficients
in E is E∧∗X = π∗LK(1)E ∧X.

There’s a pairing at work between degree 0 completed homology and degree 0 cohomology, which is
familiar but worth carefully recalling. If E is a K(1)-local ring spectrum, f : S → LK(1)E ∧ E is a map
representing a completed homology class, and α : E → E represents a cohomology class, then there’s a map

S
f→ LK(1)E ∧ E

1∧α→ LK(1)E ∧ E → E

giving an element 〈f, α〉 in π0E. If 〈f, α〉 = 0 for fixed α and all f , then α induces the zero map after
K(1)-locally smashing with E; since E is E-local in the K(1)-local category, this means α = 0. Likewise,
if 〈f, α〉 = 0 for fixed f and all α, then f = 0. Thus we have a nondegenerate pairing between cohomology
and completed homology in degree zero.

In particular, if E = Kp and α = ψλ for λ ∈ Z×p , then f(λ) = 〈f, λ〉 ∈ π0Kp = Zp. Thus f defines
a function Z×p → Zp. Likewise, f ∈ (KOp)

∧
0KOp induces a map Z×p /{±1} → Zp, since KOp is fixed by

complex conjugation ψ−1.

Proposition 8. Under the above map,

(KOp)
∧
0KOp

∼= Homc(Z×p /{±1},Zp)

and thus
KO0

pKOp
∼= Homc(Homc(Z×p /{±1},Zp)),

where a subscript c indicates continuous maps.

Proof. If vp(λ− µ) = r and λ and µ are units, then vp(λ/µ) = r as well The Adams-Harris-Switzer compu-
tation of the cooperations on KO [3] is

KO0KO ∼= {f ∈ Q[x, x−1] : f(−x) = f(x), f(k) ∈ Z[1/k] for all k},

with this isomorphism given by sending f : S → KO ∧KO to the composition

S
f→ KO ∧KO 1∧ψk

−→ KO ∧KO[1/k]→ KO[1/k].
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Now, the K(1)-localization of KO∧KO is just its p-adic completion, which we can write as lim←−(KO/pr)∧KO.
Indeed, by the standard arguments, the K(1)-localization in this case can be computed by completing at p
and inverting v1, but v1 is already invertible. Now, for any f ∈ (KO/pr)0KO and any c ∈ Z×p , let k be an
integer congruent to c mod pr; then k is prime to p, so Z[1/k]/pr ∼= Z/pr, and f(k) is well-defined mod pr,
and depends only on c and f mod pr. Thus we get a map (KO/pr)0KO → Hom((Z/pr)×/{±1},Z/pr), and
taking the limit gives

(KOp)
∧
0KOp → Homc(Z×p /{±1},Zp).

Conversely, given any continuous map g : Z×p /{±1} → Zp, the reduction mod pr g can be written as a
polynomial which sends each k ∈ (Z/pr)× to an integer in Z/pr, and we can clearly extend this to the
non-units by declaring it to be zero there. Taking the limit gives an element of (KOp)

∧
0KOp.

To turn this into a statement about cohomology, we need something universal coefficient-y. For this we
go back to [1], where it’s proved that, under a condition on a ring spectrum E, if E∗X is projective over
π∗E, then we have a canonical isomorphism

E∗X
∼=→ Hom∗π∗E(E∗X,π∗E).

The condition is that E is a homotopy colimit of finite spectra Eα such that each dual DEα satisfies both
the assumption and the conclusion of the previous sentence. Adams proves that these conditions are satisfied
for KO in particular – if (Eα) are a system of finite spectra as in the condition, then (Eα/p

r) exhibit the
condition for KO/pr, and thus we get

(KO/pr)∗KOp ∼= (KO/pr)∗KO ∼= Hom∗π∗(KO/pr)((KO/p
r)∗KO, π∗(KO/p

r)).

Taking the limit, we get that

(KOp)
∗KOp ∼= Hom∗π∗KOp

((KOp)
∧
∗KOp, π∗KOp).

Finally, taking the degree zero part and doing something mysterious, we get the desired result.

The point of this is that homology elements are functionals on Z×p , and cohomology elements are measures
on the space of such functionals. We write ∫

f dα = 〈f, α〉.

In particular,
∫
f dψλ = 〈f, ψλ〉 = f(λ) by definition, so ψλ is the Dirac measure at λ.

We’d like to use this viewpoint to understand the effect of a cohomology class on π∗KOp. After all, Ben’s
construction of the rational genus spat out a sequence of rational numbers coming from elements of these
homotopy groups, so we need something of the same format if we have any hope of reconciling the two. If
α ∈ KO0

pKOp, then the effect of α on π4k is given by (α∗v
2k)/v2k, where v is the image of the complex Bott

element. In particular, if α = ψλ, then this is λ2k, proving that π4kα =
∫
x2k dα. These numbers are called

the moments of the measure dα. Another way of seeing this is that we’re pairing α with the homology class

S ' S−4k ∧ S4k v
−2k∧v2k−→ LK(1)KOp ∧KOp.

The point is that every cohomology class gives us a sequence of p-adic integers given by what it does to the
homotopy groups of KOp; conversely, by the above proposition, if you have a sequence of numbers arising
as the moments of some measure, then that measure will correspond to a cohomology class. So we’ve finally
reduced our task to a question in p-adic analysis: which sequences of p-adic integers arise as the (even)
moments of some measure on Z×p ?

Remark 9. In the real case, this is called the ‘moment problem,’ and was solved by Riesz of representation-
theorem fame in the 20s.

The secret is that a sequence of moments on Z×p is just a sequence that behaves like the sequence of
powers of some p-adic unit when any ‘test’ numerical polynomial is evaluated on it. Moreover, we can take
our test polynomials to be divisible by an arbitrarily high power of their variable x.
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Definition 10. Fix n ≥ 0. Let An be the set of polynomials

h(x) = anx
n + an+1x

n+1 + · · ·+ amx
m,

with coefficients in Qp, such that h(c) ∈ Zp for all c ∈ Z×p . We say that a sequence (zk)k≥n satisfies the

generalized Kummer congruences if, for all h(x) =
∑
k≥n akx

k ∈ An, we have h ∗ (zk) :=
∑
k≥n akzk ∈

Zp.

Proposition 11. For any n ≥ 0, the map

KO0
pKOp →

∏
k≥n

Zp : α 7→ (π2kα)k≥n

is injective, with image the set of sequences (zk)k≥n (with zk = 0 for k odd) satisfying the generalized
Kummer congruences.

Proof. Let h(x) =
∑
akx

k ∈ An. Then since each π2kα =
∫
xk dα, we have h ∗ (π2kα) =

∫
h dα, which is a

p-adic integer since it’s the integral of an integer-valued function with respect to an integer-valued measure.
Thus, every sequence (π2kα)k≥n satisfies the generalized Kummer congruences. Conversely, if (zk) satisfies
the generalized Kummer congruences, then h ∗ (zk) ∈ Zp for all h ∈ An; but An is dense in Homc(Z×p ,Zp),
so we can define a measure α with

∫
h dα = h ∗ (zk) for all h ∈ An.

Remark 12. By the same argument, we can identify K0
pKp with the set of all sequences (zk)k≥n in

∏
Zp

satisfying the generalized Kummer congruences.

5 Crossing the streams

Now, we still need to turn the above result on operations on KOp into some more understandable statement
about spin orientations of KOp, but it’ll be easier to first discuss the bottom right corner of the square,
which is the product of π0E∞(MSpin,KOp)⊗Q ∼= [bspin,KOp]⊗Q.

Remark 13. Strictly speaking, tensor products don’t distribute over direct products of modules – in this
product of Z(p)-modules tensored with Q, we only get tuples (αp) in which a finite number of the αp have
negative p-adic valuations. However, as will soon become clear, these are the only tuples in the image of
π0E∞(MSpin,KOQ), so this algebraic wrinkle is unimportant in finding the pullback.

Ben constructed the rational Â-genus as a lift

spin // gl1S

��

// gl1S/spin

��

// bspin

gl1KO // gl1KOQ

Since gl1S is torsion, though, it’s killed by the map from gl1KO to its rationalization. Thus a rational
orientation is equivalent to a map of cofiber sequences

gl1S

��

// gl1S/spin

��

// bspin

��

// Σgl1S

��
Σ−1gl1KO ⊗Q/Z // gl1KO // gl1KOQ // gl1KO ⊗Q/Z

where I’ve written gl1KO ⊗ Q/Z for the cofiber of the rationalization map. In particular, the composition
mgl1KO : bspin → gl1KOQ/Z is fixed (it’s called the stable Miller invariant of gl1KO). On homotopy,
this map is just the characteristic series mod Z – of any rational orientation – and so, in particular, taking
our orientation to be the rational Â-genus, we get

(mKO)∗v
k = −Bk

2k
vk mod Z
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for even k.
The same argument applies to the rationalization of the p-adic case. We’re looking for maps filling in a

diagram

gl1S

��

// gl1S/spin

��

// bspin

��

//

mgl1KOp ((

Σgl1S

��
Σ−1gl1KOp ⊗Q/Z // gl1KOp // (gl1KOp)Q // gl1KOp ⊗Q/Z;

the arguments of section 2 let us K(1)-localize and post-compose with the logarithm, giving a diagram

LK(1)gl1S

��

// LK(1)gl1S/spin

��

// KOp

��

//

mgl1KOp ))

ΣLK(1)gl1S

��
Σ−1LK(1)gl1KOp ⊗Q/Z //

`1

��

LK(1)gl1KOp //

`1

��

LK(1)(gl1KOp)Q //

`1

��

LK(1)gl1KOp ⊗Q/Z

`1

��
Σ−1KOp ⊗Q/Z // KOp // (KOp)Q // KOp ⊗Q/Z.

The logarithm map `1 is a weak equivalence LK(1)gl1KOp
∼→ KOp, so it also is rationally, and thus the

bottom row of vertical maps are all weak equivalences. Meanwhile, using the logarithm map, the computation
LK(1)S ' jp (where j is the spectrum representing the image of the J-homomorphism), and the Adams
conjecture, we can replace the top row to get

jp

��

// KOp

∼ bc

��

1−ψc

// KOp

1

��

// Σjp

��
LK(1)gl1S

��

// LK(1)gl1S/spin

α

��

// KOp

��

//

mgl1KOp ))

ΣLK(1)gl1S

��
Σ−1LK(1)gl1KOp ⊗Q/Z //

∼
��

LK(1)gl1KOp //

∼ `1

��

LK(1)(gl1KOp)Q //

∼
��

LK(1)gl1KOp ⊗Q/Z

∼
��

Σ−1KOp ⊗Q/Z // KOp // (KOp)Q // KOp ⊗Q/Z.

Here c is a generator of Zp/{±1}.
Sending a dotted map α as in the diagram to the composition `1αbc ∈ [KOp,KOp], and then to the effect

of this on homotopy groups π2kKOp for k ≥ 2, gives an element of
∏
k≥2 Zp, which we write (tk(α)). Moving

one column to the right, we get an element of [KOp, LK(1)(gl1KOp)Q], whose effect on homotopy is a sequence
(bk(α)) ∈

∏
k≥2 π2kLK(1)(gl1KOp)Q. Of course, this lifts to a map to (gl1KOp)Q, and so we in fact get a

sequence in
∏
k≥2 Qp. Using Rezk’s work on the logarithm [10], we have that (`1)∗bk(α) = (1− pk−1)bk(α),

and thus,
tk(α) = (1− ψc)∗(`1)∗bk(α) = (1− ck)(1− pk−1)bk(α).

We have thus proved that

Proposition 14. The set π0E∞(MSpin,KOp) can be identified (by applying b∗c(`1)∗ and looking at the
effect on homotopy groups) with the set of sequences (bk)k≥2 ∈

∏
k≥2 Qp such that

• bk = 0 for k odd,

• the sequence ((1− ck)(1− pk−1)bk)k≥2 satisfies the generalized Kummer congruences,

• and bk ≡ −Bk/2k mod Zp.
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Remark 15. As shown in [2], for p > 2, the p-adic valuation of −Bk/2k is −vp(k) − 1. On the other hand,

let c = 1 + pa for a ∈ Zp. Then 1− ck = ±
∑k
s=1

(
k
s

)
psas, so that

vp(1−ck) ≥ inf
1≤s≤k

s+vp

((
k

s

))
= s−vp(s!)+

s−1∑
i=0

vp(k−i) ≥ s−
∞∑
k=1

⌊
s

pk

⌋
+vp(k) ≥ s+vp(k)− s

p− 1
≥ vp(k)+1.

Thus (1 − ck)(1 − pk−1)bk is indeed an integer, for bk satisfying condition 3 above. For p = 2, we instead
have vp

(
−Bk

2k

)
= −2− v2(k) for k even (it’s just −1 for k > 1 odd), but now c is of the form ±(1 + 4a), so

the same argument shows that the desired number is an integer.

Combining everything we’ve done so far gives us the desired theorem.

Theorem 16. The set π0E∞(MSpin,KO) can be identified with the set of sequences (bk)k≥2 ∈
∏
k≥2 Q

such that

• bk = 0 for k odd,

• for each prime p and p-adic unit c, the sequence((1 − ck)(1 − pk−1)bk)k≥2 satisfies the generalized
Kummer congruences,

• and bk ≡ −Bk/2k mod Z.

6 Analysis prelim practice

It’s still not clear that such a sequence exists! As it turns out, though, bk = −Bk/2k works just fine. To
prove this requires a little more p-adic analysis. We want to construct a measure on Zp/{±1} whose kth
moment, for k even, is −(1−pk−1)(1− ck)Bk

2k . This is called the (half) Mazur measure. We first construct
it on Z×p ; we then prove it has the required moments; there’s finally a technical detail required to ‘halve’ this
measure when p = 2.

As before, let A1 be the set of polynomials h ∈ Qp[x] with zero constant term such that h(c) ∈ Zp for all
c ∈ Z×p .

Theorem 17. Let c ∈ Z×p . There’s a Zp-valued measure µc on Z×p uniquely characterized by the property
that, for all h ∈ A1, ∫

Z×
p

h dµc = lim
r→∞

1

pr

∑
0≤i<pr
p-i

∫ ci

i

h(t)

t
dt,

the inner integral being a formal antiderivative. The moments of this measure are∫
Z×
p

xk dµc = −Bk
k

(1− pk−1)(1− ck),

for k ≥ 1, and ∫
Z×
p

dµc =
1

p
log(cp−1).

Finally, there’s a Zp-valued measure µ′c on Z×p /{±1} given by∫
Z×
p /{±1}

f dµ′c =
1

2

∫
Zp

f dµc.

Proof. Since A1 is dense in Homc(Z×p ,Zp), the only thing needed to do to construct the measure is to show

that the limit exists and is integral. To show the limit exists, it suffices by linearity to take h(x) = xk – that
is, to calculate the moments.
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Recall that the Bernoulli polynomials are the coefficients Bk(t) in

xetx

ex − 1
=
∑
k

Bk(t)
xk

k!
.

We have Bk = Bk(0). Define Fk(t) = Bk(t) − Bk – these are the coefficients of the power series expansion

in x of x(etx−1)
ex−1 . Taking t = n, we have

∑
k

Fk+1(n)
xk

(k + 1)!
=
enx − 1

ex − 1
=

n−1∑
m=0

emx

Thus, if Sk(n) is the power sum
∑n
m=0m

k, then

Sk(n) =
Fk+1(n)

k + 1
.

Let S∗k(n) be the sum of the mk over all m prime to p between 0 and n. Then

S∗k(pr) = Sk(pr)− pkSk(pr−1) =
1

k + 1
(Fk+1(pr)− pkFk+1(pr−1)).

One can check that as r →∞, S∗k(pr)/pr approaches (1− pk−1)Bk.
If h(x) = xk for k ≥ 1, we now have

1

pr

∑
0≤i<pr
p-i

∫ ci

i

h(t)

t
dt =

1

pr

∑
0≤i<pr
p-i

ik(ck − 1)

k
=
ck − 1

kpr
S∗k(pr).

Taking the limit as r →∞, we get the moment −(1− pk−1)(1− ck)Bk

k . This proves that the Mazur measure
exists and is well-defined.

To show that it’s integral, let h(x) =
∑
akx

k ∈ A1, and let r0 = −mink vp(ak/k). Let r ≥ r0. If i is an
integer between 0 and pr − 1 that is a unit in Z/pr, then ci is also a unit mod pr, and thus of the form

ci = j(1 +mr(j)p
r)

for some 0 ≤ j < pr − 1 and some mr(j) ∈ Zp. We now calculate that∑
0≤i<pr
p-i

(ci)k =
∑

0≤j<pr
p-j

jk(1 +mr(j)p
r)k ≡

∑
0≤j<pr
p-j

jk + kjkmr(j)p
r mod p2r,

so that ∑
0≤i<pr
p-i

(ci)k − ik =
∑

0≤j<pr
p-j

kjkmr(j)p
r mod p2r.

The term we want, for our polynomial h ∈ A1, is then

1

pr

∑
0≤i<pr
p-i

∑
k

ak
k

((ci)k − ik) =
∑

0≤j<pr
p-j

∑
k

akmr(j)j
k =

∑
0≤j<pr
p-j

mr(j)h(j) mod pr−r0 ,

since we’ve divided by pr and by each k occuring in the sum. Since h(j) and mr(j) are integral, this sum is
integral for r ≥ r0, and thus the limit, since it exists, is integral.

The computation of the measure’s volume just uses the approximation 1 = limk→∞ x(p−1)p
k

.
Construction of the half-measure is obvious when p > 2. When p = 2, we’re saying that whenever

f : Z×2 → Z2 has f(x) = f(−x), then
∫
f dµc ∈ 2Z2. Let A′1 be the set of even polynomials in A1, which is



10

clearly dense in the set of continuous even maps Z×2 → Z2. Obviously, such polynomials only have terms of
even degree. Let h(x) =

∑
akx

k ∈ A′1, and again let r0 = −mink v2(ak/k). We’ll show that for r ≥ r0 − 1,

1

2r+1

∑
0≤i<2r

2-i

(ci)k − ik

k
∈ Z2.

As before, if i is an odd integer between 0 and 2r − 1, there’s a unique expression

ci = ±j(1 +mr(j)2
r+1)

where j is an odd integer between 0 and 2r − 1 and mr(j) ∈ Z2. Then if k ≥ 2 is an even integer, we again
have ∑

0≤i<2r

2-i

(ci)k − ik =
∑

0≤j<2r

2-j

kjkmr(j)2
r+1 mod 22r+2

and thus
1

2r+1

∑
0≤i<2r

2-i

(ci)k − ik

k
≡

∑
0≤j<2r

2-j

mr(j)h(j) mod 2r−r0+1,

proving the result.

Remark 18. The same analysis allows us to realize the Â-genus as a string orientation – the only difference is
that we’re looking at sequences in

∏
k≥4 Q rather than

∏
k≥2 Q. The rest of the Ando-Hopkins-Rezk paper

is focused on string-orienting tmf . It can no longer be spin-oriented because a connectivity argument fails,
and we now have to K(2)-localize things as well as K(1)-localizing them. It looks like the number theory
involved is significantly harder. One hopes that we could likewise string-orient taf for 3 ≤ n ≤ 5, at which
point we’ll hit the same connectivity hurdle.
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