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1 Introduction

The calculus of functors saw many of its early applications in the study of manifolds, which
one could think of as phenomena special to the category of spaces. If we move to the stable
category, we lose track of manifolds, embeddings, and so on, but we gain new organization,
much of which falls under the aegis of chromatic homotopy theory. As it turns out, Good-
willie calculus interacts with chromatic apparatus in deep and surprising ways. In a 2004
paper [7], Nicholas Kuhn inaugurated this program, proving that the Goodwillie tower of
any homotopy functor F : Spec → Spec splits after ‘finite K(n)-localization,’ also known
as ‘T (n)-localization.’ In this talk, we’ll prove this result, first discussing the necessary
chromatic and equivariant background knowledge. We’ll also describe a surprising functor
constructed by Bousfield and Kuhn, relating the category of spaces to the various K(n)-local
categories of spectra, that is key to proving results like this.

2 Chromatic homotopy theory

Chromatic homotopy theory is born from the observation, perhaps dating to the work of
Miller-Ravenel-Wilson [12] and Devinatz-Hopkins-Smith [3], that p-local spectra tend to
split into various ’layers,’ each of which has a certain kind of ’periodicity.’ Specifically, for
each prime p there are p-local spectra called the Morava K-theories with coefficient rings

π∗K(n) = Fp[v±1
n ], |vn| = 2(pn − 1).

By convention, v0 = p and K(0) = HQ; also, K(∞) = HFp. K(1) is a summand of p-local
complex K-theory.

For any spectrum E, Bousfield constructed a localization functor LE : Spec → Spec
which kills all spectra X with E∗X = 0. Thus, the E-localization of X could be thought of
as the part of X that is entirely described by its E∗-homology. More precisely, the following
is true.

Definition 2.1. A spectrum X is E-acyclic if E∗X = 0. X is E-local if [A,X] = 0 for all
E-acyclic spectra A. An E-localization of X is a map X → LEX such that

• LEX is E-local;
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• the map has E-acyclic cofiber, meaning it induces an equivalence on E∗-homology.

Bousfield [1] proved that for any E, a functorial E-localization exists. It should be
emphasized that this data includes not only the functor X 7→ LEX, but also a natural
transformation from the identity to this localization functor.

The localization functors naturally form a lattice called the Bousfield lattice. We
say that 〈E〉 ≤ 〈F 〉 if every F -acyclic spectrum is E-acyclic, or equivalently if LELF ' LE;
obviously, this relation depends not on the spectrum E but only on the localization functor it
induces (its so-called Bousfield class). In a happy coincidence of notation, the meet and join
of this lattice are none other than the smash product (∧) and wedge sum (∨) of representative
spectra. The thick subcategory theorem [4] says that the Bousfield classes 〈K(n)〉 for various
p and n constitute all of the minimal elements of this lattice.1 In this sense, the Morava
K-theories are the primes of stable homotopy theory. The chromatic program thus splits into
two steps: first, analyze K(n)-localizations of a spectrum, which often carry extra structure
(some of which we’ll see in this talk!); second, assemble these monochromatic pieces back
into the original spectrum, using fracture squares and the chromatic spectral sequence of
[12].

We now briefly describe Bousfield’s construction of localizations. Though more abstract
proofs now exist, in the general context, say, of a combinatorial model category, the original
proof is rather topological and direct: one shows that X is E-local iff [A,X] = 0 when A is
an E-acyclic CW-spectrum with a bounded cardinality on its set of cells; one then finds a
set of representatives for the homotopy types of maps from such spectra to X, wedges them
together, and takes the cofiber of the resulting map to X. The point of this is that the
cardinality bound found can be forced into the proof.

Definition 2.2. A spectrum X is finitely E-local if [A,X] = 0 for all finite E-acyclic
spectra A. X is finitely E-acyclic if [X,B] = 0 for all finitely E-local spectra A. A finite
E-localization of X is a map X → LfEX such that

• LfEX is finitely E-local;

• the map has finitely E-acyclic cofiber.

Theorem 2.3. For any E, there is a functorial finite E-localization.

See [11]. In fact, finite localization is just another kind of Bousfield localization: by a
Spanier-Whitehead duality argument,

LfEX ' X ∧ LfES ' LLf
ES
X.

We now consider the case E = K(n). The Periodicity Theorem of [4] says that any K(n−
1)∗-acyclic spectrum X has a self-map ΣdX → X inducing an isomorphism on K(n)∗X, with
d > 0 if n > 0. Thus, we can form the mapping telescope

X[v−1
n ] = hocolim

(
X → Σ−dX → Σ−2dX → · · ·

)
.

1The usual statement of this theorem is as follows: the categories Cn,p of K(n − 1)-acyclic spectra for
various p and n constitute all of the subcategories of Spec closed under taking cofibers and retracts, the
so-called thick subcategories.
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We let T (n) be X[v−1
n ] for any finite type n spectrum X. Here, X is said to be type n if

K(n−1)∗X = 0 but K(n)∗X 6= 0.2 It’s a consequence of the thick subcategory theorem that
LfK(n) ' LT (n), independent of choice of X. It’s these finite K(n)-localizations that we’ll be
using in the sequel.

By the way, it’s clear from the definitions that 〈T (n)〉 ≤ 〈K(n)〉 in the Bousfield lattice,
meaning that LK(n) ' LK(n)LT (n), and that finitely K(n)-local spectra are also K(n)-local.
It’s an open conjecture, called the telescope conjecture, whether these functors are the same:
is every K(n)-acyclic spectrum also finitely K(n)-acyclic? This is known to be true for
n = 1, and believed to be false for n = 2.

I conclude this section by stating Kuhn’s main theorem.

Theorem 2.4. Let F : Spec→ Spec be any homotopy functor. For all primes p, n ≥ 1, and
d ≥ 1, the natural transformation in the Goodwillie tower of F

pd : PdF → Pd−1F

admits a natural homotopy section after applying finite K(n)-localization. Thus, there is a
natural splitting

LfK(n)PdF '
d∏
i=0

LT (n)DiF.

Remark 2.5. Kuhn uses the notation LT (n) and the phrase ‘T (n)-localization’ throughout
his paper, but after much deliberation and consultation with my family pastor, it seems to
me that ‘finite K(n)-localization’ LfK(n) is much more appropriate for several reasons. First,

T (n) refers not to an actual spectrum, nor even a homotopy type, but merely a Bousfield
class. Second, it’s probably worth emphasizing the relationship between K(n)-localization
and finite K(n)-localization, including the unlikely possibility that they may be the same
functor. Finally, with such a limited alphabet and with so much mathematics yet to be
done, we should only give meanings to letters with great care. Our culture of waste, excess,
and consumption may teach us to use the letter T now and let the future handle itself, but
it’s this sort of thinking that is melting the polar ice caps. Who’s to say that homotopy
theorists of the 2030s may not need the letter T? With this in mind, I’ll call this functor
‘finite K(n)-localization’ wherever possible, and urge others to do the same.

On the other hand, the functor arises so often in these notes that I’ll be abbreviating it
with the letter L where no ambiguity would be caused, making the above points moot.

3 Equivariant background and the Tate construction

3.1 Homotopy orbits and homotopy fixed points

The homogeneous layers of the Goodwillie tower are all of the form DrF (X) = (∂rF ∧
X∧r)hΣr . So it’s inevitable that we encounter equivariant homotopy theory in studying
it, and indeed the key steps in Kuhn’s proof involve an equivariant gadget called the Tate
construction. We sketch this here. We work in the category GSpec of näıve G-spectra (which

2If K(n)∗X = 0, then any vn-self map is null, and this telescope is contractible.
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you can think of as just spectra with a G-action), for some finite group G. We can then
define

XhG = (EG+ ∧X)/G, XhG = F (EG+, X)G.

Here EG is a contractible space with a free G-action, and EG+ is E with a disjoint basepoint
added. Both homotopy orbits and homotopy fixed points send equivariant weak equivalences
to nonequivariant weak equivalences, and likewise with cofiber sequences. Homotopy orbits
also commute with filtered homotopy colimits. Homotopy orbits preserve E-acyclic maps,
and thus E∗-equivalences; dually, homotopy fixed points preserve E-local objects. As it turns
out, we can also write the homotopy orbits functor as

XhG ' (EG+ ∧X)G = (EG+ ∧ F (EG+, X))G.

There’s an equivariant cofiber sequence (the isotropy separation sequence)

EG+ → S → ẼG,

the first map induced by the map EG→ ∗ of spaces, and this gives us a cofiber sequence

EG+ ∧ F (EG+, X)→ F (EG+, X)→ ẼG ∧ F (EG+, X).

Taking G-fixed points gives a nonequivariant cofiber sequence

XhG
NG(X)→ XhG → tG(X).

NG(X) is the norm map, and tG(X) the Tate construction of X.

Remark 3.1. If it helps, there’s an algebraic analog of this. Given a G-module M , there’s
a map NG(M) : MG → MG given by sending a class in MG to the sum of its preimages
in M , which is automatically G-invariant. If one has both a projective and an injective
Z[G]-resolution of M , one can use this norm map to join the two resolutions and obtain a
Z-graded cohomology theory, called Tate cohomology, which gives the homology of M in
negative degrees below −1, its cohomology in positive degrees, and the kernel and cokernel
of NG in degrees 0 and −1.

Remark 3.2. Kuhn points out that the norm map is the unique (up to homotopy) natu-
ral transformation (·)hG → (·)hG such that NG(Σ∞G+) is a weak equivalence. Indeed, call
a functor GSpec → Spec homological if it preserves homotopy pushouts and filtered ho-
motopy colimits. By a result of Klein, any functor has a universal left approximation by
a homological functor, and one checks that the norm map is this approximation for the
homotopy fixed points functor.

3.2 The transfer map

Before discussing the Tate construction in more detail, we mention an often-overlooked but
useful equivariant construction. If p : E → B is a finite covering map of connected spaces
with fiber of cardinality n = [π1(E) : π1(B)], then stably, there is a natural transfer map
p! going the opposite direction, such that for any homology theory h∗, the composition

h∗B
p!∗→ h∗E

p∗→ h∗B
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induces multiplication by n (some suspension isomorphisms have been suppressed). This
appears to be old folklore, but a good source is [5].3

In particular, if X is a G-space and H ≤ G, then we can model EH as EG with H-action
given by restriction, and X ∧EG+ is a free G-space away from the basepoint. Thus there’s
a covering map

XhH = (X ∧ EG+)H � (X ∧ EG+)G = XhG

with fiber [G : H]. The transfer thus gives a map of spectra Σ∞XhG → Σ∞XhH , with the
obvious composition inducing multiplication by [G : H]. If X is, for example, p-local for
some prime p not dividing [G : H], then this tells us that XhG is a summand of XhH .

One can easily generalize this to X a G-spectrum. X is at any rate a homotopy colimit
of G-spaces, and the above covering map is natural at the space level.

3.3 The Tate construction

In many cases, we’d like to prove that the Tate construction on some G-spectrum is E-acyclic,
as this allows us to identify the E-homology of its homotopy orbits with the E-homology of
its homotopy fixed points. One example, important later on, is the following.

Proposition 3.3. Let K be a finite free G-CW-complex, and Y a G-spectrum. Then
tG(F (K,Y )) ' ∗.

Proof. As homotopy orbits and homotopy fixed points preserve cofiber sequences, so does the
Tate construction, and so we reduce to the case when K = G, so F (K,Y ) ' G+ ∧ Y .4 The

Tate spectrum is thus the G-fixed points of ẼG∧F (EG+, G+∧Y ) ' ẼG∧G+∧F (EG+, Y ).

But ẼG ∧ G+ is equivariantly contractible, by the equivariant Whitehead theorem: ẼG is
nonequivariantly contractible, and EG+ ∧ G+ → G+ induces an equivalence on H-fixed
points (the only one there is) for 0 6= H ≤ G.

The above observations on the transfer map give us another example of ‘Tate vanishing.’

Proposition 3.4. If Y is a p-local G-spectrum with p prime to |G|, then tG(Y ) ' ∗.

Proof. The transfer YhG → Y factors through the homotopy fixed points of Y via the norm
map. Thus if f is the composition Y hG → Y → YhG, we have N(Y )f = fN(Y ) = |G|, which
is invertible, so N(Y ) is an equivalence.

The following proposition will be our main tool. Cp is the cyclic group of order p; if a
group action is not specified, the trivial group action should be assumed.

Proposition 3.5. Let R be a ring spectrum such that tCp(R) is E-acyclic for each p. Then
tG(M) is E-acyclic for any R-module M and any finite group G.

Lemma 3.6. If R is a ring spectrum with trivial G-action and M is an R-module, then
RhG and tG(R) are ring spectra, MhG and tG(M) are modules over these ring spectra, and
RhG → tG(R) is a map of ring spectra (indeed, of R-algebras).

3Incidentally, this paper proves that the transfer is realized as a map of spaces ΣkB → ΣkE, where k− 1
is the dimension of B and E.

4Yes, that’s right. Finite G-sets are Spanier-Whitehead self-dual.
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Proof. The homotopy fixed points are F (BG+, R), which clearly has a ring structure; put
differently, F (EG+, R) is a G-equivariant ring spectrum. For the Tate spectrum, one must

also observe that ẼG has a G-equivariant ring structure. Indeed, smashing it with the
isotropy separation sequence gives a G-equivariant cofiber sequence

ẼG ∧ EG+ → ẼG→ ẼG ∧ ẼG,

but by the G-Whitehead theorem, the left-hand term is trivial: ẼG is nonequivariantly
contractible, while EG+ and thus ẼG ∧ EG+ is H-free away from the basepoint for any
nontrivial subgroup H of G. Thus the right-hand map is a weak equivalence; we take this
to be the unit of ẼG, and any homotopy inverse the multiplication. Now, since the smash
product of (equivariant) ring spectra is an (equivariant) ring spectrum, we obtain our ring
structure on tG(R). The same arguments apply for the second and third statements.

Sketch of proof of Proposition 3.5. The map G/H 7→ RhH is a Mackey functor in spectra.5

As such, it’s a module over the Burnside ring Mackey functor G/H 7→ A(H), and this

action extends to the completion Â of A at its augmentation ideal. It follows that G/H 7→
tH(R) is also an Â-module Mackey functor, and G/H 7→ E∗(tH(R)) is a Â-module Mackey
functor in graded abelian groups. By a theorem of May and McClure [9], E∗(tG(R)) = 0 iff
E∗(tGp(R)) = 0 for all p-Sylow subgroups Gp of G. We thus reduce to the case where G is a
p-group.

But now G is solvable – indeed, it has a composition series where the quotients are all
Z/p. So we can do an induction on the normal subgroups of G. To be specific, let K be a
normal subgroup and Q = G/K, and assume for the induction step that tK(R) and tQ(R)
are both E-acyclic. We can factorize the G-norm map of R as

RhG ' (RhK)hQ

(NK(R))hQ// (RhK)hQ

NQ(RhK)
// (RhK)hQ ' RhG.

To show this, one can go back to the definitions, or one can use Remark 3.2 and show that this
map, natural in the spectrum R, is an equivalence on Σ∞G+. Now, by assumption, NK(R) is
an E∗-equivalence, and taking Q-homotopy orbits preserves this. Also by assumption, NQ(R)
is an E∗-equivalence, so tQ(R) is E-acyclic. By the above lemma, tQ(RhK) is a module over
the ring spectrum tQ(R), and thus also E-acyclic.

4 The Tate spectrum of the finitely K(n)-local sphere

The remainder of the proof is outlined as follows. Using Goodwillie calculus and its dual,
one identifies the homogeneous layer DdF as the homotopy orbits of the Σd-spectrum ∆d(F )
(which should be familiar), and the map PdF → Pd−1F as a homotopy pullback of the natural
map ∆d(F )hΣd → tΣd

(∆d(F )) (which is new). After finitely K(n)-localizing everything, and

5A Mackey functor is a pair of functors from the category of G-orbits G/H, a covariant functor giving
you ‘induction maps’ and a contravariant functor giving you ‘restriction maps,’ that interact in a certain
way. These pop up often in stable homotopy theory, often in the category of abelian groups or modules
over a ring – for example, the homotopy and homology groups of a G-space naturally have this structure. If
you’re unfamiliar with this, ignore this proof.
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composing with the map induced by F → LF , finding the desired section reduces to showing
that tΣd

(∆d(LF )) is finitely K(n)-acyclic. But ∆d(LF ) is a module over the ring spectrum
LS, and by Lemma 3.6, the Tate construction on this spectrum is a module over tΣd

(LS).
So it suffices to show that this is finitely K(n)-acyclic. In fact, one has

Proposition 4.1.
LtGLS ' ∗

for any finite group G acting trivially.

By Proposition 3.5, it suffices to prove this for G = Cp. As a final reduction, tCpLS is a
ring spectrum, so it suffices to show that the localization of its unit map LS → LtCpLS is
null.

And in a sense, we’re going to do this by reversing the above steps. There’s a restriction
map tΣpLS → tCpLS, which is easily checked to be a ring homomorphism (and in particular,
unital). So we reduce to showing that LS → LtΣpLS is null for each p. Finally, we identify
this map using Goodwillie calculus, applied to the functor Σ∞Ω∞.

The Tate spectrum of a Cp-spectrum can be described quite explicitly. Cp acts on
Rp by permuting the coordinates (the regular representation); after quotienting by the 1-
dimensional diagonal, we get a free representation which we’ll call ρ. This representation is
the restriction of a (p− 1)-dimensional representation of Σp, also called ρ. Letting S(α) be
the unit sphere in the real representation α, and Sα the one-point compactification of this
representation, there are then cofiber sequences of spaces

S(kρ)+ → S0 → Skρ

whose homotopy colimit is
S(∞ρ)+ → S0 → S∞ρ.

Of course, this is a model for the isotropy separation sequence (ECp)+ → S0 → ẼCp.
For any Cp-spectrum Y , we then have

Y hCp = F (S(∞ρ)+, Y )hCp ' holimk F (S(kρ)+, Y )hCp ' holimk F (S(kρ)+, Y )hCp ,

the last equivalence by Proposition 3.3. This implies that

tCp(Y ) ' holimk ΣF (Skρ, Y )hCp . (1)

Computing LtCpLY is only slightly more complicated. The map Y → LY is an equivariant
finite K(n)-equivalence, so YhCp → (LY )hCp is a finite K(n)-equivalence, so L(YhCp) '
L(LY )hCp . Meanwhile, (LY )hCp is already finitely K(n)-local, and repeating the arguments
of (1) gives

L(LY )hCp ' (LY )hCp ' holimk F (S(kρ)+, LY )hCp ' holimk LF (S(kρ)+, Y )hCp .

We conclude that
LtCpLY ' holimk ΣLF (Skρ, Y )hCp . (2)
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By the same arguments as in Proposition 3.4, since LY is p-local and thus (p − 1)! is
invertible, we see that the norm

F (S(kρ)+, LY )hΣp → F (S(kρ)+, LY )hΣp

is also an equivalence, so that

LtΣpLY ' holimk ΣLF (Skρ, Y )hΣp . (3)

Remark 4.2. The above arguments for Cp work for any localization functor LE in place of
L. Those for Σp work for any localization functor LE such that (p− 1)! is invertible in E∗.
In particular, they work for p-localization.

5 The Goodwillie tower of Σ∞Ω∞

Observe that Ω∞, being a right adjoint, preserves products, which in spectra are wedge sums.
Thus Ω∞(X1 ∧ · · · ∧Xd) = Ω1X1 × · · · × ΩdXd. From the definition of the smash product,
one then checks that

Σ∞Ω∞(X1 ∧ · · · ∧Xd) =
∨
S⊆d

∧
i∈S

Σ∞Ω∞Xi.

The maps in the cube are evidently the projections of this wedge onto the smaller wedges
indexed by T ⊆ S for some S ⊆ d. Thus the dth cross effect is simply Σ∞Ω∞X1 ∧ · · · ∧
Σ∞Ω∞Xd.

I claim that the multilinearization of this is just X1 ∧ · · · ∧Xd. I’ll show this for d = 1,
the generalization to higher values of d being obvious. There’s a counit map

Σ∞Ω∞X → X.

If X is c-connected for c > 0, then so is Ω∞X (and it has the same homotopy groups). By
the Freudenthal suspension theorem, πkΣ

∞Ω∞X = πSkΩ∞X = πkΩ
∞X for all k ≤ 2c. Thus

the counit map is 2c-connected. It follows that the multilinearization is as described.
Putting this together, we get

Proposition 5.1. Σ∞Ω∞ : Spec→ Spec is analytic, and its Goodwillie derivatives are

Dd(X) = (X∧d)hΣd
.

Remark 5.2. That’s not a typo. These functors, called the extended powers, were called
Dd before Goodwillie calculus was even invented!

We can write the Tate spectra from earlier in terms of the extended powers. Note that

DpΣ
−kX ' (S−kp ∧X∧p)hΣp ' F (Skp, X∧p)hΣp ' Σ−kF (Skρ, X∧p)hΣp .

Thus, by (3), we get
LtΣpLS ' holimk LΣk+1DpS

−k. (4)
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6 The Bousfield-Kuhn functor

6.1 Constructing the functor

We now reach part of the original point of this talk: a surprising interaction between the
infinite loop space functor and our chromatic localization functors.

Theorem 6.1. For any prime p and n ≥ 1, there is a homotopy-commutative diagram,
unique up to natural equivalence,

Spec
Lf
K(n) //

Ω∞ ##

LfK(n)Spec

Spaces.
Φf

n

99

By composing with K(n)-localization, one likewise gets a factorization LK(n) ' ΦnΩ∞ for
another functor Φn, the ordinary Bousfield-Kuhn functor. Of course, the finite one is the one
we’ll be using, and implies the existence of the ordinary one. To save verbiage, though, I’ll
just construct the ordinary functor – all the spectra involved will be finite, so the finite one
is no harder. The bizarreness of these things should be emphasized, and cuts two ways: on
the one hand, it means that K(n)-localization can be constructed ‘unstably’; on the other,
it means that Ω∞ has a section at the price of K(n)-localizing (for any n ≥ 1!). This was
done by Bousfield in [2] for n = 1, and Kuhn in [6] for larger n; a good exposition is in [8].
We’ll construct the functor on the level of homotopy categories, following [6].

Definition 6.2. A Cn-resolution of a spectrum X is a diagram of spectra over X

X1 → X2 → · · ·

such that each Xi is finite and K(n − 1)-acyclic, and the natural map lim−→K(m)∗(Xi) →
K(m)∗X is an isomorphism for all m ≥ n.

Proposition 6.3. For n ≥ 1, every finite p-local spectrum has a Cn-resolution.

Proof. For n = 1, a one-term resolution exists, namely the fiber of X → XQ. We proceed
by induction on n. First, take X itself to be K(n− 1)-acyclic and equipped with a choice of
vn-self map v : ΣdX → X. Let Xi be the cofiber of vi : Σ−1X → Σ−1−diX. Then each Xi is
K(n)-acyclic. The maps of cofiber sequences

Σ−1X
vi //

1
��

Σ−1−diX //

v
��

Xi
//

��

X

1

��
Σ−1X

vi+1
// Σ−1−d(i+1)X // Xi+1

// X

show that the Xi form a diagram of spectra over X. Finally, by the periodicity theorem,
K(m)∗v is nilpotent for each m ≥ n + 1, so hocolimXi → X induces a K(m)∗-equivalence
for all m ≥ n+ 1. Thus this is a Cn+1-resolution.
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Now let X be arbitrary, and let

X(1)→ X(2)→ · · · → X

be a Cn-resolution. By the periodicity theorem, we can choose vn-self maps vi : ΣdiX(i) →
X(i), with di|di+1, such that each square

Σdi+1X(i)

v
di+1/di
i

��

// Σdi+1X(i+ 1)

vi+1

��
X(i) // X(i+ 1)

commutes. Letting (X(i)j) be the Cn+1-resolution of X(i) defined as above via the self map
vi, one easily observes that there are induced maps of Cn+1-resolutions

X(1)∗

��

// X(2)∗

��

// · · ·

X(1) //

��

X(2) //

zz

· · ·

X

making everything commute. The diagonal of this diagram of spectra X(i)j is the sequence
Yi = X(i)i, with the maps Yi → Yi+1 given by the composites X(i)i → X(i + 1)i →
X(i+ 1)i+1. These are K(n− 1)-acyclic, map coherently to X, and are cofinal in the above
diagram, so they have the same homotopy colimit.

The thrust of the construction is as follows. Given any space Z with a self map v :
ΣdZ → Z, and X a space, let Φ′Z(X) be the spectrum6 with mdth space Maps(Z,X), and
with structure maps

Φ′Z(X)md = Maps(Z,X)→ ΩdΦ′Z(X)(m+1)d = ΩdMaps(Z,X) ∼= Maps(ΣdZ,X)

induced by v. This is a functor Φ′Z : Top → Spec, natural in Z. Also, Φ′Z
∼= Φ′

ΣdZ
, so by

suspending sufficiently, we can take Z to be not just a space but any finite spectrum. Define
ΦZ = LK(n)Φ

′
Z .

Proposition 6.4. If K(n)∗v is an isomorphism, then for E a spectrum, there is a natural
equivalence

ΦZ(Ω∞E) ' F (Z,LK(n)E).

6This is following Adams’ construction of spectra in the blue book, where he points out that one can
define a spectrum (up to equivalence) by giving only a cofinal subset of its spaces and the obvious structure
maps.
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Proof. Without loss of generality, Z is a space. Themdth space of Φ′Z(Ω∞E) is Maps(Z ′,Ω∞E) '
Ω∞F (Z,E). Looking at the construction of this spectrum, one sees that in this case it’s actu-
ally hocolimF (ΣmdZ,E) ' F (Z,E)[v−1]. Thus we want to show that LK(n)(F (Z,E)[v−1]) '
F (Z,LK(n)E). The latter spectrum is K(n)-local; since Z is finite, the maps

F (Z,E)[v−1]← F (Z,E)→ F (Z,LK(n)E)

identify with
(DZ ∧ E)[v−1]← DZ ∧ E → DZ ∧ LK(n)E,

both of which are K(n)∗-equivalences.

Proof of Theorem 6.1. Let (Zi) be a Cn-resolution of the p-local sphere, and for each Zi,
choose a vn-self map vi : ΣdiZi → Zi, such that the various vi agree with each other in the
sense of the above proof. Define Φn = holim ΦZi

. Then

ΦnΩ∞E = holim ΦZi
Ω∞E ' F (hocolimZi, LK(n)E) ' LK(n)E

since hocolimZi → S is a K(n)∗-equivalence.

6.2 Applying the functor

In our situation, the use of this is as follows. By elementary category theory, the natural
transformation

Ω∞
ηΩ∞→ Ω∞Σ∞Ω∞

Ω∞ε→ Ω∞

is the identity; applying the Bousfield-Kuhn functor, we get a factorization of the identity
natural transformation

L→ LΣ∞Ω∞ → L.

But Σ∞Ω∞ = holimd Pd, and P1(X) = D1(X) = X, so the right-hand map factorizes, in
particular, as LΣ∞Ω∞ → LPp → L. There’s thus a section of LPp → L, and also, for any k,
of LΣkPpΣ

−k → L.
Applying a bunch of obvious exact functors to the sphere, there’s a cofiber sequence

holimk LΣkPpS
−k → holimk LΣkPp−1S

−k → holimk LΣk+1DpS
−k. (5)

I claim that the middle term is just LS, and the first map is induced by the natural map
LPpS → LP1S = LS. With this understood, the above argument says that this map has a
section; thus, the right-hand map, which is LS → LtΣpLS, is null. This doesn’t prove the
Tate vanishing theorem, since this isn’t necessarily the localization of the unit map of tΣpLS.
Nevertheless, I claim that the localized unit map factors through it. To complete the proof,
we’ll examine each of these claims in turn.
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6.3 Extended powers of odd spheres

Lemma 6.5. For k odd, p an odd prime, and 2 ≤ d ≤ p− 1, DdS
k is p-locally contractible.

Proof. Since d > 1, Skd ∧EΣd+ ' Skd is simply connected, so π1DdS
k = Σd, which vanishes

after p-localization. Thus we are led to consider the p-local homology of DdS
k. But p-

locally, the transfer map exhibits DdS
k as a stable summand of Skd, so it suffices to show

that Hkd(DdS
k) = 0.

More precisely, there’s a homotopy orbit spectral sequence (really just a Serre spectral
sequence; s and t are used since p was taken)

Hs(Σd;Ht(S
kd))⇒ Hs+t(DdS

k).

The map of homotopy fibrations

Skd

��

// Skd

��

// ∗

��
Skd // DdS

k // BΣd

induces a map of spectral sequences from the trivial spectral sequence

Hs(∗;Ht(S
kd))⇒ Hs+t(S

kd)

to the spectral sequence for DdS
k, and again the transfer map gives a p-local section of this.

So finally we reduce to checking that H0(Σd;Hkd(S
kd)) = 0 p-locally. But since k is odd,

HkdS
kd is the sign representation σ of Σd, which is to say the group Z with even permutations

acting trivially and odd permutations acting by −1; one merely observes that swapping two
odd-dimensional smash factors of Skd = Sk ∧ Sk ∧ · · · ∧ Sk induces a sign of −1. Since
H0(Σd;σ) ∼= Z/2 and p is odd, we are done.

Remark 6.6. The same argument shows that if k is even in the same situation, the map
Skd → DdS

k is a p-local equivalence.

As a result, we find that Pp−1S
k → Sk is a p-local equivalence for k odd.7 Taking the

homotopy limit, we get that the map

holimk ΣkPp−1S
−k → S

is a p-local equivalence. Thus the middle term in (5) is indeed LS (and we see why we had
to take homotopy limits).

6.4 Factorizing the unit map

The map in (5) is of the form holimk Lδk, with δk : S → Σk+1DpS
−k. By the remark after

(3), the unit map we want can be written as holimk Ldk, where dk : S → Σk+1DpS
−k is

defined p-locally. We conclude by showing that dk factors through δk. In the following, all
spectra are assumed p-local.

7This works for p = 2 too, since P1 is the identity.
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7 Calculus and cocalculus

We’ve at last proved the key Proposition 4.1. To properly apply it, a little bit of calculus is
needed. As usual, let crdF be the dth cross effect of the functor F , defined as the total fiber
of the cube

[S ⊆ d] 7→ F

( ∨
i∈d−S

Xi

)
,

and let (∆dF )(X) be the Σd-spectrum L(crdF )(X, . . . , X), where L denotes multilineariza-
tion. Then DdF = (∆dF )hΣd

.
In [10], McCarthy describes a dualization of Goodwillie calculus for functors Spec→ Spec.

Briefly, we define crdF (X1, . . . , Xd) to be the total cofiber of the cube

[S ⊆ d] 7→ F

(∏
i∈S

Xi

)
,

and (∆dF )(X) = L(crdF )(X, . . . , X). There are natural transformations crdF → crdF and
∆dF → ∆dF , and since we’re in a stable model category, these are weak equivalences.

Lemma 7.1. If F is d-excisive, then tΣd
(∆dF ) is (d− 1)-excisive.

Proof. It suffices to show that crd(tΣd
(∆dF )) ' ∗. The Tate construction preserves wedges

and fibers, so it commutes with crd. Since F is d-excisive, crdF is already multilinear, and
so crd∆dF ' F

Proof of Theorem 2.4. There’s a map of cofiber sequences

(∆dF )hΣd

∼
��

// (∆dF )hΣd //

��

tΣd
(∆dF )

��
Dd((∆dF )hΣd) // Pd((∆dF )hΣd) // Pd−1((∆dF )hΣd).

Here the middle map comes from the Taylor tower for (∆dF )hΣd , and the left-hand map from
the fact that (∆dF )hΣd

is d-excisive and homogeneous. By the above lemma, the right-hand
map is an equivalence, so this is an equivalence of cofiber sequences (when F is d-excisive).

Cocalculus gives us a natural transformation

F (X)→ F (Xd)hΣd → (∆dF )(X)hΣd ' (∆dF )(X)hΣd .

Applying this to a Goodwillie cofiber sequence for F allows us to extend the above diagram

DdF //

∼
��

PdF //

��

Pd−1F

��
Dd((∆dF )hΣd) // Pd((∆dF )hΣd) // Pd−1((∆dF )hΣd)

(∆dF )hΣd
//

∼

OO

(∆dF )hΣd //

∼

OO

tΣd
(∆dF )

∼

OO

13



(still assuming F to be d-excisive). The top left-hand map is a weak equivalence by a similar
argument as in the lemma, so we conclude that PdF → Pd−1F is a homotopy pullback of
(∆dF )hΣd → tΣd

(∆dF ). Replacing an arbitrary F by PdF (which is always d-excisive), we
prove this for arbitrary F .

We apply this by passing along the natural transformation F → LF and localizing. This
gives a commutative diagram, where the rows are cofiber sequences

LDdF //

∼
��

LPdF //

��

LPd−1F

��
LDdLF //

∼
��

LPdLF //

��

LPd−1LF

��
L(∆d(LF )hΣd

) ∼
// L(∆d(LF )hΣd) // L(tΣd

(LF ))

Now, Dd is defined by taking a cofiber, a multilinearization, and homotopy orbits, all things
which preserve T (n)-equivalences. Thus DdF → DdLF is a T (n)-equivalence, so applying L
gives a weak equivalence. We just proved that the next map in the chain is a weak equiva-
lence. The final marked weak equivalence is so because the bottom right corner is a module
over LtΣd

LS, and thus contractible. Thus, finally, the map LPdF → L(∆d(LF )hΣd) ' LDdF
is a T (n)-local splitting to the Goodwillie tower.
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