
K3 cohomology theories

Paul VanKoughnett

September 24, 2014

1 Introduction

This is the first talk in this quarter’s seminar, on K3 surfaces and their possible homotopy-theoretic appli-
cations. Today, we’re going to start right off with the homotopy-theoretic applications. First, let me say a
few words about chromatic homotopy theory.

Chromatic homotopy theory has learned how to associate to any space a quasi-coherent sheaf over the
moduli of formal groups, Mfg. Localized at a prime p, this moduli space is stratified by the height of the
formal group, an integer between 0 and ∞. Using the chromatic convergence theorem and the Adams-
Novikov spectral sequence, we could immediately turn around and calculate homotopy groups, but this
is opaque and computationally intense, so the game has long been to find geometric substitutes for the
formal groups themselves. Typically, this comes in the form of a stack with a flat map to Mfg, with the
associated ‘sheaf’ of Landweber exact cohomology theories enriched to a sheaf of even periodic E∞ ring
spectra. The main example is the moduliMell of elliptic curves, from which we get the topological modular
forms spectrum, TMF , which detects height 2 phenomena; the height 1 story analogously retcons into a
story about constructing KO from the stack BZ/(2), classifying Gm-torsors.

Now we ask where to go next. One idea is to move from elliptic curves to higher-dimensional abelian
varieties with extra structure; this has been fully worked out by [BL10], but as yet has not been amenable to
calculation. The idea of using K3 surfaces apparently is due to [Tho00], but the first attempt at working it
out, using the stacky techniques of the new millennium, is in Szymik’s [Szy10] and [Szy09]. [Szy10] defines
K3 cohomology theories and proves their Landweber exactness, while [Szy09] does an obstruction theory
calculation, enriching this to a K(1)-local sheaf of E∞ ring spectra. To obtain the full strength of the theory
associated to TMF , we need to at least also do this K(n)-locally for 2 ≤ n ≤ 10, 10 being the largest height
(less than ∞) of the formal groupa ssociated to a K3 surface.

I’ll quickly discuss K3 surfaces and the formal group construction we’ll be using, define K3 cohomology
theories, and finally walk us through the obstruction theory calculation. Anything below labeled ‘black box’
or ‘question’ is to be proved later in the quarter.

2 K3 surfaces

Definition 1. A K3 surface is a smooth proper surface X with trivial canonical bundle OX
∼= ωX :=∧2

ΩX , and with H1(X,OX) = 0.

Let’s unpack this for a second. The name ‘K3,’ one of the silliest in math, is due to Weil, and is ‘in honor of
Kummer, Kähler, Kodaira, and the beautiful K2 mountain in Kashmir’ [Wei79][p. 546]. Any abelian variety
has trivial canonical bundle; indeed, it has trivial tangent sheaf, since a trivialization at the identity section
can be translated around the whole variety using the group structure. This is the connection with elliptic
curves; generally, a smooth proper scheme with trivial canonical bundle is called a Calabi-Yau scheme,
and the homotopy theory we’ll discuss today is hypothesized to generalize to higher-dimensional Calabi-Yaus
as well. The only Calabi-Yau surfaces are K3 surfaces and abelian surfaces, and the last condition, triviality
of H1, is just used to exclude abelian surfaces, as well as to define the formal group below.

Definition 2. A polarization of a K3 surface X is an ample line bundle L on X. Some power of L will
then give a projective embedding of X. The degree of L is the self-intersection of an associated Cartier
divisor; if L is very ample, this is the degree of the projective embedding associated to L.
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Proposition 3 (Black box). Every K3 surface admits a polarization, and its degree is always even. Not
every ample line bundle on a K3 surface is very ample.

Proposition 4 (Black box). Every K3 surface has Hodge diamond

1
0 0

1 22 1
0 0

1

and thus Euler characteristic χ(OX) = 24.

Example 5 (Black box). Some examples of K3 surfaces should be given: in particular, a smooth quartic
hypersurface in P3 is a K3 surface (polarized of degree 4); the Kummer surface of an abelian surface,
given by blowing up at the 16 2-torsion points and then quotienting by the automorphism [−1], is another
example. We should talk about the formal Brauer groups of these objects.

We can now define the moduli stack we’re interested in. Define

MK3
2d (SpecR) = {K3 surfaces over R with a polarization of degree 2d}.

Theorem 6 (Black box). MK3
2d is a separated Deligne-Mumford stack that is smooth of dimension 19 over

Z
[

1
2d

]
.

As motivating example, consider the moduli of smooth quartics in P3. A quartic is given by a homogeneous
degree 4 polynomial in 4 variables, which is observed to have

(
4+4−1

4

)
= 35 coefficients; thus, the moduli of

all quartic equations, up to scaling, is just P34, and the moduli of smooth quartic equations is obtained by
throwing out the closed hypersurface Ω where the discriminant vanishes, leaving behind a 34-dimensional
affine variety. Of course, two distinct equations can cut out isomorphic surfaces, so we must quotient out by
PGL(4), an affine algebraic group of dimension 42 − 1 = 15. The resulting stack,

(P34 − Ω)//PGL(4),

has the required dimension 15. Unfortunately, this is not all of MK3
4 , since not every degree-4 ample line

bundle is very ample.

Question 7. What does MK3
4 look like outside the image of this substack?

3 The formal Brauer group

This is the biggest black box of all, since it’s described in the hard paper [AM77] and everyone else just
quotes it.

Definition 8. The Brauer group of a smooth proper scheme X over a field k is

BrX(k) = H2
ét(X;Gm).

The formal Brauer group of X is the functor from Artin local k-algebras to abelian groups given by

B̂rX : R 7→ ker(H2
ét(X × SpecR;Gm)→ H2

ét(X;Gm).

Theorem 9 (Black box). If X is a K3 surface, then B̂rX is a 1-dimensional formal group over k. If in

addition char k = p > 0, then the height of B̂rX is between 1 and 10, or ∞.

The triviality of H1 is required for the above theorem. More generally, we can define formal Hn in the
same way, and thus get a formal group out of a Calabi-Yau scheme of dimension n with vanishing Hn−1.

When n = 1, we get the formal Picard group. For an elliptic curve, one can and should show that
this is canonically isomorphic to the dual of its formal group. For a higher genus curve, we get instead the
formal group of its Jacobian, which has dimension higher than 1. This might explain the ‘trivial canonical
bundle’ condition.
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Proposition 10 (Black box). Let MK3
2d,p = MK3

2d × SpecFp. Then MK3
2d,p admits a stratification by closed

substacks
MK3

2d,p =MK3
2d,p,≥1 ⊇MK3

2d,p,≥2 ⊆ · · · ⊆ MK3
2d,p,≥11 =MK3

2d,p,∞

where MK3
2d,p,≥h parametrizes degree 2d polarized K3 surfaces with formal Brauer group of height at least h.

The stacks MK3
2d,p,≥h −MK3

2d,p,∞ is smooth of dimension 20− h, for 1 ≤ h < 11. Each closed substack is cut
out from the last by the vanishing of a section of an invertible sheaf of ideals.

The existence of this stratification is a corollary of the existence of the formal Brauer group, viewed as
a map MK3

2d,p → Mfg. The hard work here seems to be the last assertion, which importantly implies that
the stratification is locally defined by a regular sequence, and thus implies the dimension assertion. Szymik
directs us to [Ogu01] and [vdGK00], which look very exciting. A hint of the proof: one starts by showing
that the Dieudonné module of the formal Brauer group of a K3 surface X is the Witt vector cohomology
H2(X;W(OX)). The height ≥ n locus is then defined by the vanishing of Frobenius on the truncated
version H2(X;Wn(OX)). With a little work, one gets a line bundle out of this. In Ogus’ words, ‘it is not
only possible, but even easy, to extract geometric information from crystalline periods.’

4 K3 spectra

Definition 11. A K3 spectrum is a triple (E,X, π) where

• E is an even periodic ring spectrum,

• X is a K3 surface over π0E,

• and π is an isomorphism π : GE
∼→ B̂rX .

Theorem 12. Let R be a noetherian local Z(p)-algebra, with p - 2d, and X a degree 2d polarized K3 surface
over SpecR that is classified by a flat map SpecR→MK3

2d , with finite height h at the closed point of SpecR.

Then B̂rX is Landweber exact.

Proof. We want to show that the height filtration of SpecR is cut out by a regular sequence, and stabilizes
at some finite height. First we deal with height 0: R is flat over the moduli of K3 surfaces, so it is flat over
Z
[

1
2d

]
, and thus p is a non-zero-divisor by the condition on p. We can now safely mod out by p, and thus

assume that R is a noetherian local Fp-algebra, X classified by a flat map to MK3
2d,p.

Since X has finite height h at the closed point of SpecR, and since MK3
2d,p,≥h+1 is a closed substack of

MK3
2d,p,≥h, the height ≥ h+ 1 locus is a closed subscheme of SpecR that doesn’t contain its closed point. By

Nakayama’s lemma, it’s empty. Thus the filtration terminates.
Finally, regularity of the filtration after height 0 is forced by regularity of the height filtration on MK3

2d,p

and flatness of the map classifying X.

Question 13. This proof is a little confusing. It seems like we should be able to show that B̂r :MK3
2d,(p),<∞ →

Mfg,(p) is flat (where the <∞ in the first stack denotes finite height mod p. I’m too tired to figure this out,
so is it true? In the case of elliptic curves, even to prove this map is representable seems to require the
Weierstrass parametrization.

In any case, we have the much-vaunted ‘sheaf of Landweber exact cohomology theories’ on MK3
2d . Since

MK3
2d is algebraic, and since K3 surfaces lift to characteristic 0 (see [DI81]), we can get a K3 spectrum at

any geometric point of MK3
2d : just lift it to a smooth cover by a scheme, take the local ring at the point, lift

to characteristic 0 if need be, and use the theorem.
The issue is that this sheaf is not truly a sheaf in the sense of derived algebraic geometry. In order to

take global sections in any sort of homotopy-invariant sense, we need the sections of the sheaf to be more
than just homotopy types. We need them to be E∞ ring spectra. The next part of the work does this for
the ordinary locus MK3

2d,p,≤1 – that is, K(1)-locally.
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5 K(1)-local K3 spectra

I’ll only discuss this briefly, since we need harder techniques of homotopy theory to do it. It’s a series of
black boxes.

First, let’s say we have a diagram of cohomology theories we want to enrich to a diagram of E-local E∞
ring spectra, uniquely up to homotopy. Goerss-Hopkins obstruction theory tells us when we can do this: in
general, the obstruction groups are groups of derivations over the monad of power operations of E. When
E = K(1) = mod p K-theory, this monad is very well understood, and its algebras are θ-algebras, or
p-complete λ-rings; in the torsion-free case, these correspond to algebras with a p-power Adams operation.

Next we need to apply this to the diagram of height 1 K3 cohomology theories over MK3
2d,p,≤1. If we can

show that each cohomology theory has a unique E∞ structure, and the restriction maps of the sheaf have
unique E∞ realizations, we’ll be done. This comes down to constructing θ-algebra structures on the formal
local rings of the moduli stack. This is easily done once we know what these formal neighborhoods look like:
they’re just formal completions of A20, and the Adams operation is given by a certain lift of the Frobenius
map to this formal neighborhood.

6 The future

After this, we’re going to leave homotopy theory behind and spend a while talking about algebraic surfaces.
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