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Building topological spaces

Problem: How to combinatorially describe a topological
space X?

(always ‘geometric’ – Hausdorff, compactly
generated, . . . )

Solution: Build it in stages, out of cells.

n-cell = Dn = unit n-disk, attached by its boundary Sn−1.

X is described entirely by attaching maps Sn−1 → X (n−1),
where X (n−1) is the n-dimensional part of X .

Even simpler: Sn−1 → X (n−1)/X (n−2), a bouquet of
(n − 1)-spheres; or Sn−1 → X (n−2)/X (n−3), a bouquet of
(n − 2)-spheres; or . . .
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Homotopy

Two of these spaces are equivalent if the attaching maps of
one can be deformed into the attaching maps of the other.
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Homotopy

Two of these spaces are equivalent if the attaching maps of
one can be deformed into the attaching maps of the other.

Definition

Given two maps f , g : X → Y , a homotopy f ∼ g is map
H : X × [0, 1]→ Y with H|X×{0} = f , and H|X×{1} = Y .

[X ,Y ] = {maps X → Y }/homotopy

Paul VanKoughnett
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Homotopy

Definition

Given two maps f , g : X → Y , a homotopy f ∼ g is map
H : X × [0, 1]→ Y with H|X×{0} = f , and H|X×{1} = Y .

[X ,Y ] = {maps X → Y }/homotopy

Remark

Always take spaces to come equipped with a fixed basepoint; maps
preserve basepoint; homotopies don’t move basepoint.
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An example

CP2 is constructed by attaching a 4-cell to CP1 = S2.

Entirely described by an attaching map S3 → S2.

If this map is homotopic to a trivial one, then CP2 is
equivalent to S4 t S2/basepoints.

Is it? How many other complexes like this are there?
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Homotopy groups

Definition

The nth homotopy group of a space X is

πnX := [Sn,X ].

Example

π0X = [S0,X ] = {path components of X}

π1X = [S1,X ] = fundamental group of X
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Why are they groups?

Because we can pinch a sphere:

π0 is just a set. πn is abelian for n ≥ 2 (why?).
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Homotopy groups of spheres

n
9

0 0 0 0 0 0 0 0

8

0 0 0 0 0 0 0

7

0 0 0 0 0 0

6

0 0 0 0 0

5

0 0 0 0

4

0 0 0

3

0 0

2

0

1

Z

πkS
n 1 2 3 4 5 6 7 8 9 k
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A tool: suspension

Definition

The suspension of a space X is

ΣX = X × [0, 1]/(X × {0} ∪ X × {1} ∪ ∗ × [0, 1]).
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Definition

The suspension of a space X is

ΣX = X × [0, 1]/(X × {0} ∪ X × {1} ∪ ∗ × [0, 1]).

There are suspension maps

E : [X ,Y ]→ [ΣX ,ΣY ]
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A tool: suspension

Definition

The suspension of a space X is

ΣX = X × [0, 1]/(X × {0} ∪ X × {1} ∪ ∗ × [0, 1]).

Theorem (Freudenthal suspension theorem)

The suspension map

E : πkS
n → πk+1S

n+1

is a surjection for k = 2n − 1 and an isomorphism for k < 2n − 1.
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Using the suspension theorem

Theorem (Freudenthal suspension theorem)

The suspension map

E : πkS
n → πk+1S

n+1

is a surjection for k = 2n − 1 and an isomorphism for k < 2n − 1.

Z = π1S
1 � π2S

2 ∼→ π3S
3 ∼→ · · ·

πnS
n is cyclic. . . and must be Z, because the degree of a map is

homotopy invariant.

Paul VanKoughnett
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πnS
n = Z

Degree two maps:
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Homotopy groups of spheres

n
9 0 0 0 0 0 0 0 0 Z
8 0 0 0 0 0 0 0 Z
7 0 0 0 0 0 0 Z
6 0 0 0 0 0 Z
5 0 0 0 0 Z
4 0 0 0 Z
3 0 0 Z
2 0 Z
1 Z 0 0 0 0 0 0 0 0

πkS
n 1 2 3 4 5 6 7 8 9 k

Is everything else zero? NO!
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The Hopf fibration

S3 is the unit sphere in C2, with coordinates z , w .

S2 is the Riemann sphere C ∪ {∞}, with coordinate λ.

η : S3 → S2 sends (z ,w) 7→ z/w .

The fiber over any point is a circle.

The fiber over two points are two linked circles.
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Homotopy groups of spheres

n
9 0 0 0 0 0 0 0 0 Z
8 0 0 0 0 0 0 0 Z 2
7 0 0 0 0 0 0 Z 2 2
6 0 0 0 0 0 Z 2 2 24
5 0 0 0 0 Z 2 2 24 2
4 0 0 0 Z 2 2 Z⊕ 12 2⊕ 2 2⊕ 2
3 0 0 Z 2 2 12 2 2 3
2 0 Z Z 2 2 12 2 2 3
1 Z 0 0 0 0 0 0 0 0

πkS
n 1 2 3 4 5 6 7 8 9 k
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Generalizing the degree

We want a more geometric characterization of these
homotopy elements.

The degree of a map Sn → Sn is an integer, because its fibers
are signed 0-manifolds.

The ‘degree’ of a map Sk → Sn should just be its fiber – a
stably framed (n − k)-manifold.
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Stably framed manifolds

Definition

A stably framed manifold is a manifold Mn with an embedding
i : Mn ↪→ Rn+k , k � 0, and a trivialization of the normal bundle
NiM ∼= M × Rk .

We identify M ↪→ Rn+k with M ↪→ Rn+k ↪→ Rn+k+1 the inclusion
into the first n + k coordinates, together with the larger framing
given by adding an upward-pointing normal vector everywhere.

Definition

A framed cobordism of n-dimensional stably framed manifolds
M, N is an (n + 1)-manifold W with ∂W ∼= M t N, together with
a stable framing on W extending those on M and N.

Paul VanKoughnett

Stable homotopy theory and geometry
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The Pontryagin-Thom isomorphism

Ωfr
n := {stably framed n-manifolds}/framed cobordism

Theorem

There is a canonical isomorphism

Ωfr
n
∼= πn+kS

k , k � 0.

Homotopy elements can be described as framed n-manifolds!

Paul VanKoughnett
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0-manifolds: πnS
n

A 0-manifold in Rn is a set of points. A framing is a sign attached
to each point: orient their normal bundles either with or against
the orientation of Rn.

Paul VanKoughnett
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1-manifolds: πn+1S
n

A 1-manifold is just a circle. A framing on S1 → Rn+1 is
determined by how a basis for Rn rotates as you go around
the circle.

Framings are classified by π1SO(n) = Z/2 for n ≥ 3 (and Z
for n ≥ 2).

The Hopf map S3 → S2 corresponds to S1 → S3 together
with a basis for its normal bundle that twists once.

Paul VanKoughnett

Stable homotopy theory and geometry
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2-manifolds: πn+2S
n

One way to make cobordisms is through surgery.

Framed
cobordisms require framed surgery.

On any surface, we can do surgery to decrease the
genus. . . but not all surgeries can be made framed.

Pontryagin: whether or not we can do framed surgery on a
1-cycle is determined by a map

φ : H1(M;Z/2)→ Z/2.

But H1(M;Z/2) is positive-dimensional if M has genus ≥ 1,
so ker φ is always nonzero, so any M is framed-cobordant to a
sphere. ∴ πn+2S

n = 0, n� 0.

Paul VanKoughnett

Stable homotopy theory and geometry
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so ker φ is always nonzero, so any M is framed-cobordant to a
sphere. ∴ πn+2S

n = 0, n� 0.

Paul VanKoughnett
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Pontryagin’s mistake

φ : H1(M;Z/2)→ Z/2

is not a linear map, but a quadratic map. Even if we can do
surgery on two-cycles, we might not be able to on their sum.

Whether or not we can do framed surgery on M depends on
the nature of this quadratic map. We can conclude that

πn+2S
2 ∼= Z/2, n� 0.

A representative for the nontrivial class is given by the
product of two nontrivially framed circles.

Paul VanKoughnett

Stable homotopy theory and geometry
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Homotopy groups of spheres

n
9 0 0 0 0 0 0 0 0 Z
8 0 0 0 0 0 0 0 Z 2
7 0 0 0 0 0 0 Z 2 2
6 0 0 0 0 0 Z 2 2 24
5 0 0 0 0 Z 2 2 24 2
4 0 0 0 Z 2 2 Z⊕ 12 2⊕ 2 2⊕ 2
3 0 0 Z 2 2 12 2 2 3
2 0 Z Z 2 2 12 2 2 3
1 Z 0 0 0 0 0 0 0 0

πkS
n 1 2 3 4 5 6 7 8 9 k
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